These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Intracellular generation of single-strand template increases the knock-in efficiency by combining CRISPR/Cas9 with AAV. Xiao Q; Min T; Ma S; Hu L; Chen H; Lu D Mol Genet Genomics; 2018 Aug; 293(4):1051-1060. PubMed ID: 29671068 [TBL] [Abstract][Full Text] [Related]
23. New Additions to the CRISPR Toolbox: CRISPR- Shola DTN; Yang C; Kewaldar VS; Kar P; Bustos V CRISPR J; 2020 Apr; 3(2):109-122. PubMed ID: 32315232 [TBL] [Abstract][Full Text] [Related]
24. CRISPR/Cas9-mediated knock-in of an optimized TetO repeat for live cell imaging of endogenous loci. Tasan I; Sustackova G; Zhang L; Kim J; Sivaguru M; HamediRad M; Wang Y; Genova J; Ma J; Belmont AS; Zhao H Nucleic Acids Res; 2018 Sep; 46(17):e100. PubMed ID: 29912475 [TBL] [Abstract][Full Text] [Related]
25. CRISPR/Cas9 allows efficient and complete knock-in of a destabilization domain-tagged essential protein in a human cell line, allowing rapid knockdown of protein function. Park A; Won ST; Pentecost M; Bartkowski W; Lee B PLoS One; 2014; 9(4):e95101. PubMed ID: 24743236 [TBL] [Abstract][Full Text] [Related]
26. ssODN-mediated knock-in with CRISPR-Cas for large genomic regions in zygotes. Yoshimi K; Kunihiro Y; Kaneko T; Nagahora H; Voigt B; Mashimo T Nat Commun; 2016 Jan; 7():10431. PubMed ID: 26786405 [TBL] [Abstract][Full Text] [Related]
27. Homologous recombination-mediated targeted integration in monkey embryos using TALE nucleases. Chu C; Yang Z; Yang J; Yan L; Si C; Kang Y; Chen Z; Chen Y; Ji W; Niu Y BMC Biotechnol; 2019 Jan; 19(1):7. PubMed ID: 30646876 [TBL] [Abstract][Full Text] [Related]
28. Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nakade S; Tsubota T; Sakane Y; Kume S; Sakamoto N; Obara M; Daimon T; Sezutsu H; Yamamoto T; Sakuma T; Suzuki KT Nat Commun; 2014 Nov; 5():5560. PubMed ID: 25410609 [TBL] [Abstract][Full Text] [Related]
29. Fast and efficient Drosophila melanogaster gene knock-ins using MiMIC transposons. Vilain S; Vanhauwaert R; Maes I; Schoovaerts N; Zhou L; Soukup S; da Cunha R; Lauwers E; Fiers M; Verstreken P G3 (Bethesda); 2014 Oct; 4(12):2381-7. PubMed ID: 25298537 [TBL] [Abstract][Full Text] [Related]
31. Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in Drosophila. Gratz SJ; Ukken FP; Rubinstein CD; Thiede G; Donohue LK; Cummings AM; O'Connor-Giles KM Genetics; 2014 Apr; 196(4):961-71. PubMed ID: 24478335 [TBL] [Abstract][Full Text] [Related]
32. Efficient generation of targeted and controlled mutational events in porcine cells using nuclease-directed homologous recombination. Butler JR; Santos RMN; Martens GR; Ladowski JM; Wang ZY; Li P; Tector M; Tector AJ J Surg Res; 2017 May; 212():238-245. PubMed ID: 28550913 [TBL] [Abstract][Full Text] [Related]
33. Simple embryo injection of long single-stranded donor templates with the CRISPR/Cas9 system leads to homology-directed repair in Xenopus tropicalis and Xenopus laevis. Nakayama T; Grainger RM; Cha SW Genesis; 2020 Jun; 58(6):e23366. PubMed ID: 32277804 [TBL] [Abstract][Full Text] [Related]
34. Targeted integration in human cells through single crossover mediated by ZFN or CRISPR/Cas9. Liu X; Wang M; Qin Y; Shi X; Cong P; Chen Y; He Z BMC Biotechnol; 2018 Oct; 18(1):66. PubMed ID: 30340581 [TBL] [Abstract][Full Text] [Related]
35. Efficient targeted integration directed by short homology in zebrafish and mammalian cells. Wierson WA; Welker JM; Almeida MP; Mann CM; Webster DA; Torrie ME; Weiss TJ; Kambakam S; Vollbrecht MK; Lan M; McKeighan KC; Levey J; Ming Z; Wehmeier A; Mikelson CS; Haltom JA; Kwan KM; Chien CB; Balciunas D; Ekker SC; Clark KJ; Webber BR; Moriarity BS; Solin SL; Carlson DF; Dobbs DL; McGrail M; Essner J Elife; 2020 May; 9():. PubMed ID: 32412410 [TBL] [Abstract][Full Text] [Related]
36. CRISPR-mediated knock-in in the mouse embryo using long single stranded DNA donors synthesised by biotinylated PCR. Bennett H; Aguilar-Martinez E; Adamson AD Methods; 2021 Jul; 191():3-14. PubMed ID: 33172594 [TBL] [Abstract][Full Text] [Related]
37. A system for site-specific integration of transgenes in mammalian cells. Chi X; Zheng Q; Jiang R; Chen-Tsai RY; Kong LJ PLoS One; 2019; 14(7):e0219842. PubMed ID: 31344144 [TBL] [Abstract][Full Text] [Related]
38. Transcription-coupled donor DNA expression increases homologous recombination for efficient genome editing. Gao K; Zhang X; Zhang Z; Wu X; Guo Y; Fu P; Sun A; Peng J; Zheng J; Yu P; Wang T; Ye Q; Jiang J; Wang H; Lin CP; Gao G Nucleic Acids Res; 2022 Oct; 50(19):e109. PubMed ID: 35929067 [TBL] [Abstract][Full Text] [Related]
39. CRISPR/Cas9 Genome Editing in Caenorhabditis elegans: Evaluation of Templates for Homology-Mediated Repair and Knock-Ins by Homology-Independent DNA Repair. Katic I; Xu L; Ciosk R G3 (Bethesda); 2015 Jun; 5(8):1649-56. PubMed ID: 26044730 [TBL] [Abstract][Full Text] [Related]
40. CRISPR/Cas9 and TALEN-mediated knock-in approaches in zebrafish. Auer TO; Del Bene F Methods; 2014 Sep; 69(2):142-50. PubMed ID: 24704174 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]