BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 31675107)

  • 1. An examination of climate-driven flowering-time shifts at large spatial scales over 153 years in a common weedy annual.
    Berg CS; Brown JL; Weber JJ
    Am J Bot; 2019 Nov; 106(11):1435-1443. PubMed ID: 31675107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Climate drives phenological reassembly of a mountain wildflower meadow community.
    Theobald EJ; Breckheimer I; HilleRisLambers J
    Ecology; 2017 Nov; 98(11):2799-2812. PubMed ID: 29023677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Region-specific phenological sensitivities and rates of climate warming generate divergent temporal shifts in flowering date across a species' range.
    Love NLR; Mazer SJ
    Am J Bot; 2021 Oct; 108(10):1873-1888. PubMed ID: 34642935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Herbarium records are reliable sources of phenological change driven by climate and provide novel insights into species' phenological cueing mechanisms.
    Davis CC; Willis CG; Connolly B; Kelly C; Ellison AM
    Am J Bot; 2015 Oct; 102(10):1599-609. PubMed ID: 26451038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substantial shifts in flowering phenology of Sternbergia vernalis in the Himalaya: Supplementing decadal field records with historical and experimental evidences.
    Hassan T; Hamid M; Wani SA; Malik AH; Waza SA; Khuroo AA
    Sci Total Environ; 2021 Nov; 795():148811. PubMed ID: 34246140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of herbarium and citizen science phenology datasets for detecting response of flowering time to climate change in Denmark.
    Iwanycki Ahlstrand N; Primack RB; Tøttrup AP
    Int J Biometeorol; 2022 May; 66(5):849-862. PubMed ID: 35235036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimating phenological sensitivity in contemporary vs. historical data sets: Effects of climate resolution and spatial scale.
    Zettlemoyer MA; Wilson JE; DeMarche ML
    Am J Bot; 2022 Dec; 109(12):1981-1990. PubMed ID: 36321486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shifts in flowering phenology in response to spring temperatures in eastern Tennessee.
    Faidiga AS; Oliver MG; Budke JM; Kalisz S
    Am J Bot; 2023 Aug; 110(8):e16203. PubMed ID: 37327370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changing Climate Drives Divergent and Nonlinear Shifts in Flowering Phenology across Elevations.
    Rafferty NE; Diez JM; Bertelsen CD
    Curr Biol; 2020 Feb; 30(3):432-441.e3. PubMed ID: 31902725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Herbarium specimens reveal the footprint of climate change on flowering trends across north-central North America.
    Calinger KM; Queenborough S; Curtis PS
    Ecol Lett; 2013 Aug; 16(8):1037-44. PubMed ID: 23786499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contrasting effects of warming and increased snowfall on Arctic tundra plant phenology over the past two decades.
    Bjorkman AD; Elmendorf SC; Beamish AL; Vellend M; Henry GH
    Glob Chang Biol; 2015 Dec; 21(12):4651-61. PubMed ID: 26216538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spring- and fall-flowering species show diverging phenological responses to climate in the Southeast USA.
    Pearson KD
    Int J Biometeorol; 2019 Apr; 63(4):481-492. PubMed ID: 30734127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phylogenetic conservatism and climate factors shape flowering phenology in alpine meadows.
    Li L; Li Z; Cadotte MW; Jia P; Chen G; Jin LS; Du G
    Oecologia; 2016 Oct; 182(2):419-28. PubMed ID: 27351544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term trends mask variation in the direction and magnitude of short-term phenological shifts.
    Iler AM; Høye TT; Inouye DW; Schmidt NM
    Am J Bot; 2013 Jul; 100(7):1398-406. PubMed ID: 23660568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Will phenotypic plasticity affecting flowering phenology keep pace with climate change?
    Richardson BA; Chaney L; Shaw NL; Still SM
    Glob Chang Biol; 2017 Jun; 23(6):2499-2508. PubMed ID: 27739159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beyond the usual climate? Factors determining flowering and fruiting phenology across a genus over 117 years.
    Bartlett KB; Austin MW; Beck JB; Zanne AE; Smith AB
    Am J Bot; 2023 Jul; 110(7):e16188. PubMed ID: 37200535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sex-dependent phenological responses to climate vary across species' ranges.
    Xie Y; Thammavong HT; Berry LG; Huang CH; Park DS
    Proc Natl Acad Sci U S A; 2023 Nov; 120(48):e2306723120. PubMed ID: 37956437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extirpated prairie species demonstrate more variable phenological responses to warming than extant congeners.
    Zettlemoyer MA; Renaldi K; Muzyka MD; Lau JA
    Am J Bot; 2021 Jun; 108(6):958-970. PubMed ID: 34133754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micro-climatic controls and warming effects on flowering time in alpine snowbeds.
    Carbognani M; Bernareggi G; Perucco F; Tomaselli M; Petraglia A
    Oecologia; 2016 Oct; 182(2):573-85. PubMed ID: 27299914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of Arctic plant phenological sensitivity to climate change from historical records.
    Panchen ZA; Gorelick R
    Ecol Evol; 2017 Mar; 7(5):1325-1338. PubMed ID: 28261446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.