BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1086 related articles for article (PubMed ID: 31675207)

  • 1. Advancing Wireframe DNA Nanostructures Using Single-Molecule Fluorescence Microscopy Techniques.
    Platnich CM; Hariri AA; Sleiman HF; Cosa G
    Acc Chem Res; 2019 Nov; 52(11):3199-3210. PubMed ID: 31675207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of Strand Displacement and Hybridization on Wireframe DNA Nanostructures: Dissecting the Roles of Size, Morphology, and Rigidity.
    Platnich CM; Hariri AA; Rahbani JF; Gordon JB; Sleiman HF; Cosa G
    ACS Nano; 2018 Dec; 12(12):12836-12846. PubMed ID: 30485067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wireframe and tensegrity DNA nanostructures.
    Simmel SS; Nickels PC; Liedl T
    Acc Chem Res; 2014 Jun; 47(6):1691-9. PubMed ID: 24720250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developing DNA nanotechnology using single-molecule fluorescence.
    Tsukanov R; Tomov TE; Liber M; Berger Y; Nir E
    Acc Chem Res; 2014 Jun; 47(6):1789-98. PubMed ID: 24828396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA-Nanotechnology-Enabled Chiral Plasmonics: From Static to Dynamic.
    Zhou C; Duan X; Liu N
    Acc Chem Res; 2017 Dec; 50(12):2906-2914. PubMed ID: 28953361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic DNA Nanotubes: Reversible Switching between Single and Double-Stranded Forms, and Effect of Base Deletions.
    Rahbani JF; Hariri AA; Cosa G; Sleiman HF
    ACS Nano; 2015 Dec; 9(12):11898-908. PubMed ID: 26556531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protocols for self-assembly and imaging of DNA nanostructures.
    Sobey TL; Simmel FC
    Methods Mol Biol; 2011; 749():13-32. PubMed ID: 21674362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-molecule methods in structural DNA nanotechnology.
    Platnich CM; Rizzuto FJ; Cosa G; Sleiman HF
    Chem Soc Rev; 2020 Jul; 49(13):4220-4233. PubMed ID: 32538403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomic force microscopy as an imaging tool to study the bio/nonbio complexes.
    Bednarikova Z; Gazova Z; Valle F; Bystrenova E
    J Microsc; 2020 Dec; 280(3):241-251. PubMed ID: 32519330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Building DNA nanostructures for molecular computation, templated assembly, and biological applications.
    Rangnekar A; LaBean TH
    Acc Chem Res; 2014 Jun; 47(6):1778-88. PubMed ID: 24720350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural Transformation of Wireframe DNA Origami via DNA Polymerase Assisted Gap-Filling.
    Agarwal NP; Matthies M; Joffroy B; Schmidt TL
    ACS Nano; 2018 Mar; 12(3):2546-2553. PubMed ID: 29451771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA-enabled integrated molecular systems for computation and sensing.
    LaBoda C; Duschl H; Dwyer CL
    Acc Chem Res; 2014 Jun; 47(6):1816-24. PubMed ID: 24849225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of a Polyhedral DNA 12-Arm Junction for Self-Assembly of Wireframe DNA Lattices.
    Manuguerra I; Grossi G; Thomsen RP; Lyngsø J; Pedersen JS; Kjems J; Andersen ES; Gothelf KV
    ACS Nano; 2017 Sep; 11(9):9041-9047. PubMed ID: 28806061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanically interlocked DNA nanostructures for functional devices.
    Jester SS; Famulok M
    Acc Chem Res; 2014 Jun; 47(6):1700-9. PubMed ID: 24627986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconfiguring DNA Nanotube Architectures
    Schaffter SW; Schneider J; Agrawal DK; Pacella MS; Rothchild E; Murphy T; Schulman R
    ACS Nano; 2020 Oct; 14(10):13451-13462. PubMed ID: 33048538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Programming rigidity into size-defined wireframe DNA nanotubes.
    Saliba D; Luo X; Rizzuto FJ; Sleiman HF
    Nanoscale; 2023 Mar; 15(11):5403-5413. PubMed ID: 36826342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconfigurable, braced, three-dimensional DNA nanostructures.
    Goodman RP; Heilemann M; Doose S; Erben CM; Kapanidis AN; Turberfield AJ
    Nat Nanotechnol; 2008 Feb; 3(2):93-6. PubMed ID: 18654468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequential growth of long DNA strands with user-defined patterns for nanostructures and scaffolds.
    Hamblin GD; Rahbani JF; Sleiman HF
    Nat Commun; 2015 May; 6():7065. PubMed ID: 25940750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoscale Mapping Functional Sites on Nanoparticles by Points Accumulation for Imaging in Nanoscale Topography (PAINT).
    Delcanale P; Miret-Ontiveros B; Arista-Romero M; Pujals S; Albertazzi L
    ACS Nano; 2018 Aug; 12(8):7629-7637. PubMed ID: 30048592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA Origami: Scaffolds for Creating Higher Order Structures.
    Hong F; Zhang F; Liu Y; Yan H
    Chem Rev; 2017 Oct; 117(20):12584-12640. PubMed ID: 28605177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 55.