BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 31675230)

  • 1. Biorefinery Byproducts and Epoxy Biorenewable Monomers: A Structural Elucidation of Humins and Triglycidyl Ether of Phloroglucinol Cross-Linking.
    Cantarutti C; Dinu R; Mija A
    Biomacromolecules; 2020 Feb; 21(2):517-533. PubMed ID: 31675230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of Resins Using Epoxies and Humins as Building Blocks: A Mechanistic Study Based on In-Situ FT-IR and NMR Spectroscopies.
    Montané X; Dinu R; Mija A
    Molecules; 2019 Nov; 24(22):. PubMed ID: 31739442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biobased Epoxy Nanocomposites Derived from Lignin-Based Monomers.
    Zhao S; Abu-Omar MM
    Biomacromolecules; 2015 Jul; 16(7):2025-31. PubMed ID: 26135389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Limonene-Based Epoxy: Anhydride Thermoset Reaction Study.
    Couture G; Granado L; Fanget F; Boutevin B; Caillol S
    Molecules; 2018 Oct; 23(11):. PubMed ID: 30360571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bio-Based Epoxy Shape-Memory Thermosets from Triglycidyl Phloroglucinol.
    Santiago D; Guzmán D; Ferrando F; Serra À; De la Flor S
    Polymers (Basel); 2020 Mar; 12(3):. PubMed ID: 32131508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel Bio-Based Epoxy Thermosets Based on Triglycidyl Phloroglucinol Prepared by Thiol-Epoxy Reaction.
    Guzmán D; Santiago D; Serra À; Ferrando F
    Polymers (Basel); 2020 Feb; 12(2):. PubMed ID: 32033354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copolymerization as a Strategy to Combine Epoxidized Linseed Oil and Furfuryl Alcohol: The Design of a Fully Bio-Based Thermoset.
    Pin JM; Guigo N; Vincent L; Sbirrazzuoli N; Mija A
    ChemSusChem; 2015 Dec; 8(24):4149-61. PubMed ID: 26663869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermoset-cross-linked lignocellulose: a moldable plant biomass.
    Karumuri S; Hiziroglu S; Kalkan AK
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6596-604. PubMed ID: 25734539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Build-To-Specification Vanillin and Phloroglucinol Derived Biobased Epoxy-Amine Vitrimers.
    Genua A; Montes S; Azcune I; Rekondo A; Malburet S; Daydé-Cazals B; Graillot A
    Polymers (Basel); 2020 Nov; 12(11):. PubMed ID: 33182799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High biobased content epoxy-anhydride thermosets from epoxidized sucrose esters of Fatty acids.
    Pan X; Sengupta P; Webster DC
    Biomacromolecules; 2011 Jun; 12(6):2416-28. PubMed ID: 21561167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis, characterization and biocompatibility of novel biodegradable cross-linked co-polymers based on poly(propylene oxide) diglycidylether and polyethylenimine.
    Ding Y; Wang J; Wong CS; Halley PJ; Guo Q
    J Biomater Sci Polym Ed; 2011; 22(4-6):457-73. PubMed ID: 20566040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of structure and functionality of core polyol in highly functional biobased epoxy resins.
    Pan X; Webster DC
    Macromol Rapid Commun; 2011 Sep; 32(17):1324-30. PubMed ID: 21692121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-Furanic Humins-Based Non-Isocyanate Polyurethane (NIPU) Thermoset Wood Adhesives.
    Chen X; Pizzi A; Essawy H; Fredon E; Gerardin C; Guigo N; Sbirrazzuoli N
    Polymers (Basel); 2021 Jan; 13(3):. PubMed ID: 33504084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formaldehyde-free self-polymerization of lignin-derived monomers for synthesis of renewable phenolic resin.
    Yang W; Jiao L; Wang X; Wu W; Lian H; Dai H
    Int J Biol Macromol; 2021 Jan; 166():1312-1319. PubMed ID: 33161075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fully Biobased Epoxy Resins from Fatty Acids and Lignin.
    Ortiz P; Vendamme R; Eevers W
    Molecules; 2020 Mar; 25(5):. PubMed ID: 32150811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of degradation compounds from lignocellulosic biomass in the biorefinery: sugar reaction mechanisms.
    Rasmussen H; Sørensen HR; Meyer AS
    Carbohydr Res; 2014 Feb; 385():45-57. PubMed ID: 24412507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation, molecular structure, and morphology of humins in biomass conversion: influence of feedstock and processing conditions.
    van Zandvoort I; Wang Y; Rasrendra CB; van Eck ER; Bruijnincx PC; Heeres HJ; Weckhuysen BM
    ChemSusChem; 2013 Sep; 6(9):1745-58. PubMed ID: 23836679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New Understandings of the Relationship and Initial Formation Mechanism for Pseudo-lignin, Humins, and Acid-Induced Hydrothermal Carbon.
    Cheng B; Wang X; Lin Q; Zhang X; Meng L; Sun RC; Xin F; Ren J
    J Agric Food Chem; 2018 Nov; 66(45):11981-11989. PubMed ID: 30376319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aliphatic polycarbonates based on carbon dioxide, furfuryl glycidyl ether, and glycidyl methyl ether: reversible functionalization and cross-linking.
    Hilf J; Scharfenberg M; Poon J; Moers C; Frey H
    Macromol Rapid Commun; 2015 Jan; 36(2):174-9. PubMed ID: 25407342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epoxy monomers derived from tung oil fatty acids and its regulable thermosets cured in two synergistic ways.
    Huang K; Liu Z; Zhang J; Li S; Li M; Xia J; Zhou Y
    Biomacromolecules; 2014 Mar; 15(3):837-43. PubMed ID: 24484324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.