These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 31675230)
1. Biorefinery Byproducts and Epoxy Biorenewable Monomers: A Structural Elucidation of Humins and Triglycidyl Ether of Phloroglucinol Cross-Linking. Cantarutti C; Dinu R; Mija A Biomacromolecules; 2020 Feb; 21(2):517-533. PubMed ID: 31675230 [TBL] [Abstract][Full Text] [Related]
2. Synthesis of Resins Using Epoxies and Humins as Building Blocks: A Mechanistic Study Based on In-Situ FT-IR and NMR Spectroscopies. Montané X; Dinu R; Mija A Molecules; 2019 Nov; 24(22):. PubMed ID: 31739442 [TBL] [Abstract][Full Text] [Related]
5. Bio-Based Epoxy Shape-Memory Thermosets from Triglycidyl Phloroglucinol. Santiago D; Guzmán D; Ferrando F; Serra À; De la Flor S Polymers (Basel); 2020 Mar; 12(3):. PubMed ID: 32131508 [TBL] [Abstract][Full Text] [Related]
6. Novel Bio-Based Epoxy Thermosets Based on Triglycidyl Phloroglucinol Prepared by Thiol-Epoxy Reaction. Guzmán D; Santiago D; Serra À; Ferrando F Polymers (Basel); 2020 Feb; 12(2):. PubMed ID: 32033354 [TBL] [Abstract][Full Text] [Related]
7. Copolymerization as a Strategy to Combine Epoxidized Linseed Oil and Furfuryl Alcohol: The Design of a Fully Bio-Based Thermoset. Pin JM; Guigo N; Vincent L; Sbirrazzuoli N; Mija A ChemSusChem; 2015 Dec; 8(24):4149-61. PubMed ID: 26663869 [TBL] [Abstract][Full Text] [Related]
8. Thermoset-cross-linked lignocellulose: a moldable plant biomass. Karumuri S; Hiziroglu S; Kalkan AK ACS Appl Mater Interfaces; 2015 Apr; 7(12):6596-604. PubMed ID: 25734539 [TBL] [Abstract][Full Text] [Related]
14. Formaldehyde-free self-polymerization of lignin-derived monomers for synthesis of renewable phenolic resin. Yang W; Jiao L; Wang X; Wu W; Lian H; Dai H Int J Biol Macromol; 2021 Jan; 166():1312-1319. PubMed ID: 33161075 [TBL] [Abstract][Full Text] [Related]
15. Fully Biobased Epoxy Resins from Fatty Acids and Lignin. Ortiz P; Vendamme R; Eevers W Molecules; 2020 Mar; 25(5):. PubMed ID: 32150811 [TBL] [Abstract][Full Text] [Related]
16. Formation of degradation compounds from lignocellulosic biomass in the biorefinery: sugar reaction mechanisms. Rasmussen H; Sørensen HR; Meyer AS Carbohydr Res; 2014 Feb; 385():45-57. PubMed ID: 24412507 [TBL] [Abstract][Full Text] [Related]
17. Formation, molecular structure, and morphology of humins in biomass conversion: influence of feedstock and processing conditions. van Zandvoort I; Wang Y; Rasrendra CB; van Eck ER; Bruijnincx PC; Heeres HJ; Weckhuysen BM ChemSusChem; 2013 Sep; 6(9):1745-58. PubMed ID: 23836679 [TBL] [Abstract][Full Text] [Related]
18. New Understandings of the Relationship and Initial Formation Mechanism for Pseudo-lignin, Humins, and Acid-Induced Hydrothermal Carbon. Cheng B; Wang X; Lin Q; Zhang X; Meng L; Sun RC; Xin F; Ren J J Agric Food Chem; 2018 Nov; 66(45):11981-11989. PubMed ID: 30376319 [TBL] [Abstract][Full Text] [Related]
19. Aliphatic polycarbonates based on carbon dioxide, furfuryl glycidyl ether, and glycidyl methyl ether: reversible functionalization and cross-linking. Hilf J; Scharfenberg M; Poon J; Moers C; Frey H Macromol Rapid Commun; 2015 Jan; 36(2):174-9. PubMed ID: 25407342 [TBL] [Abstract][Full Text] [Related]
20. Epoxy monomers derived from tung oil fatty acids and its regulable thermosets cured in two synergistic ways. Huang K; Liu Z; Zhang J; Li S; Li M; Xia J; Zhou Y Biomacromolecules; 2014 Mar; 15(3):837-43. PubMed ID: 24484324 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]