These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 31675237)

  • 1. Structural Effects on the Norrish Type I α-Bond Cleavage of Tropospherically Important Carbonyls.
    Rowell KN; Kable SH; Jordan MJT
    J Phys Chem A; 2019 Dec; 123(48):10381-10396. PubMed ID: 31675237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Femtochemistry of norrish type-I reactions: I. Experimental and theoretical studies of acetone and related ketones on the S1 surface.
    Diau EW; Kötting C; Zewail AH
    Chemphyschem; 2001 May; 2(5):273-93. PubMed ID: 23696502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intermolecular dissociation energies of 1-naphthol·n-alkane complexes.
    Knochenmuss R; Maity S; Balmer F; Müller C; Leutwyler S
    J Chem Phys; 2018 Jul; 149(3):034306. PubMed ID: 30037256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical Investigation of the Atmospheric Photochemistry of Glyoxylic Acid in the Gas Phase.
    Harrison AW; Shaw MF; De Bruyn WJ
    J Phys Chem A; 2019 Sep; 123(38):8109-8121. PubMed ID: 31487176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intermolecular dissociation energies of dispersively bound complexes of aromatics with noble gases and nitrogen.
    Knochenmuss R; Sinha RK; Leutwyler S
    J Chem Phys; 2018 Apr; 148(13):134302. PubMed ID: 29626863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Femtochemistry of Norrish type-I reactions: III. Highly excited ketones--theoretical.
    Diau EW; Kötting C; Sølling TI; Zewail AH
    Chemphyschem; 2002 Jan; 3(1):57-78. PubMed ID: 12465477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intermolecular dissociation energies of 1-naphthol complexes with large dispersion-energy donors: Decalins and adamantane.
    Knochenmuss R; Sinha RK; Balmer FA; Ottiger P; Leutwyler S
    J Chem Phys; 2020 Mar; 152(10):104304. PubMed ID: 32171216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The dynamics of CO production from the photolysis of acetone across the whole S
    Jacob LSD; Lee KLK; Schmidt TW; Nauta K; Kable SH
    J Chem Phys; 2022 Mar; 156(9):094303. PubMed ID: 35259892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photodissociation dynamics of CF
    Campbell JS; Nauta K; Kable SH; Hansen CS
    J Chem Phys; 2021 Nov; 155(20):204303. PubMed ID: 34852470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of Reaction Barriers and Thermochemical Properties with Explicitly Correlated Coupled-Cluster Methods: A Basis Set Assessment.
    Zhang J; Valeev EF
    J Chem Theory Comput; 2012 Sep; 8(9):3175-86. PubMed ID: 26605729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intermolecular dissociation energies of hydrogen-bonded 1-naphthol complexes.
    Knochenmuss R; Sinha RK; Poblotzki A; Den T; Leutwyler S
    J Chem Phys; 2018 Nov; 149(20):204311. PubMed ID: 30501267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Triplet and Singlet (n,π*) Excited States of 4
    Sessions AG; McDonnell MP; Christianson DA; Drucker S
    J Phys Chem A; 2019 Jul; 123(29):6269-6280. PubMed ID: 31298545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization and basis-set dependence of a restricted-open-shell form of B2-PLYP double-hybrid density functional theory.
    Graham DC; Menon AS; Goerigk L; Grimme S; Radom L
    J Phys Chem A; 2009 Sep; 113(36):9861-73. PubMed ID: 19645437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computation of accurate excitation energies for large organic molecules with double-hybrid density functionals.
    Goerigk L; Moellmann J; Grimme S
    Phys Chem Chem Phys; 2009 Jun; 11(22):4611-20. PubMed ID: 19475182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of experimental bond dissociation energies using composite ab initio methods and evaluation of the performances of density functional methods in the calculation of bond dissociation energies.
    Feng Y; Liu L; Wang JT; Huang H; Guo QX
    J Chem Inf Comput Sci; 2003; 43(6):2005-13. PubMed ID: 14632451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intermolecular dissociation energies of dispersively bound 1-naphthol⋅cycloalkane complexes.
    Maity S; Ottiger P; Balmer FA; Knochenmuss R; Leutwyler S
    J Chem Phys; 2016 Dec; 145(24):244314. PubMed ID: 28049305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photodissociation dynamics of propanal and isobutanal: The Norrish Type I pathway.
    Harrison AW; Kable SH
    J Chem Phys; 2018 Apr; 148(16):164308. PubMed ID: 29716215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Captodatively stabilized biradicaloids as chromophores for singlet fission.
    Wen J; Havlas Z; Michl J
    J Am Chem Soc; 2015 Jan; 137(1):165-72. PubMed ID: 25478747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms for the formation of acenes from α-diketones by bisdecarbonylation.
    Bettinger HF; Mondal R; Krasowska M; Neckers DC
    J Org Chem; 2013 Mar; 78(5):1851-7. PubMed ID: 23057418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic Shielding, Aromaticity, Antiaromaticity and Bonding in the Low-Lying Electronic States of S
    Karadakov PB; Al-Yassiri MAH; Cooper DL
    Chemistry; 2018 Nov; 24(63):16791-16803. PubMed ID: 30270473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.