These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 31675333)

  • 1. A Low-Cost End-to-End sEMG-Based Gait Sub-Phase Recognition System.
    Luo R; Sun S; Zhang X; Tang Z; Wang W
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jan; 28(1):267-276. PubMed ID: 31675333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long short-term memory (LSTM) recurrent neural network for muscle activity detection.
    Ghislieri M; Cerone GL; Knaflitz M; Agostini V
    J Neuroeng Rehabil; 2021 Oct; 18(1):153. PubMed ID: 34674720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. sEMG Based Gait Phase Recognition for Children with Spastic Cerebral Palsy.
    Wei PN; Xie R; Tang R; Li C; Kim J; Wu M
    Ann Biomed Eng; 2019 Jan; 47(1):223-230. PubMed ID: 30218222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of Limb Joint Angles Based on Multi-Source Signals by GS-GRNN for Exoskeleton Wearer.
    Xie H; Li G; Zhao X; Li F
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32085505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous online prediction of lower limb joints angles based on sEMG signals by deep learning approach.
    Song Q; Ma X; Liu Y
    Comput Biol Med; 2023 Sep; 163():107124. PubMed ID: 37315381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. sEMG-signal and IMU sensor-based gait sub-phase detection and prediction using a user-adaptive classifier.
    Ryu J; Lee BH; Maeng J; Kim DH
    Med Eng Phys; 2019 Jul; 69():50-57. PubMed ID: 31153877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design, development and testing of a low-cost sEMG system and its use in recording muscle activity in human gait.
    Supuk TG; Skelin AK; Cic M
    Sensors (Basel); 2014 May; 14(5):8235-58. PubMed ID: 24811078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Impact of Load Style Variation on Gait Recognition Based on sEMG Images Using a Convolutional Neural Network.
    Zhang X; Hu Y; Luo R; Li C; Tang Z
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface EMG Pattern Recognition Using Long Short-Term Memory Combined with Multilayer Perceptron.
    He Y; Fukuda O; Bu N; Okumura H; Yamaguchi N
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5636-5639. PubMed ID: 30441614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface muscle pressure as a measure of active and passive behavior of muscles during gait.
    Yungher DA; Wininger MT; Barr JB; Craelius W; Threlkeld AJ
    Med Eng Phys; 2011 May; 33(4):464-71. PubMed ID: 21176884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of cut-off frequency when high-pass filtering equine sEMG signals during locomotion.
    St George L; Hobbs SJ; Richards J; Sinclair J; Holt D; Roy SH
    J Electromyogr Kinesiol; 2018 Dec; 43():28-40. PubMed ID: 30219734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classification of rhythmic locomotor patterns in electromyographic signals using fuzzy sets.
    Thrasher TA; Ward JS; Fisher S
    J Neuroeng Rehabil; 2011 Dec; 8():65. PubMed ID: 22151914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intra-subject approach for gait-event prediction by neural network interpretation of EMG signals.
    Di Nardo F; Morbidoni C; Mascia G; Verdini F; Fioretti S
    Biomed Eng Online; 2020 Jul; 19(1):58. PubMed ID: 32723335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. IMU, sEMG, or their cross-correlation and temporal similarities: Which signal features detect lateral compensatory balance reactions more accurately?
    Nouredanesh M; Tung J
    Comput Methods Programs Biomed; 2019 Dec; 182():105003. PubMed ID: 31465977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-feature gait recognition with DNN based on sEMG signals.
    Yao T; Gao F; Zhang Q; Ma Y
    Math Biosci Eng; 2021 Apr; 18(4):3521-3542. PubMed ID: 34198399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design, development, and evaluation of a local sensor-based gait phase recognition system using a logistic model decision tree for orthosis-control.
    Farah JD; Baddour N; Lemaire ED
    J Neuroeng Rehabil; 2019 Feb; 16(1):22. PubMed ID: 30709363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human activity monitoring system based on wearable sEMG and accelerometer wireless sensor nodes.
    Biagetti G; Crippa P; Falaschetti L; Orcioni S; Turchetti C
    Biomed Eng Online; 2018 Nov; 17(Suppl 1):132. PubMed ID: 30458783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial variability of muscle activity during human walking: the effects of different EMG normalization approaches.
    Cronin NJ; Kumpulainen S; Joutjärvi T; Finni T; Piitulainen H
    Neuroscience; 2015 Aug; 300():19-28. PubMed ID: 25967267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A method for quantitative SEMG decomposition and MUAP classification during voluntary isovelocity elbow flexion.
    Akazawa J; Okuno R
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6776-9. PubMed ID: 24111299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface electromyography analysis for variable gait.
    Roetenberg D; Buurke JH; Veltink PH; Forner Cordero A; Hermens HJ
    Gait Posture; 2003 Oct; 18(2):109-17. PubMed ID: 14654214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.