These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 31675348)

  • 41. Generative adversarial networks with mixture of t-distributions noise for diverse image generation.
    Sun J; Zhong G; Chen Y; Liu Y; Li T; Huang K
    Neural Netw; 2020 Feb; 122():374-381. PubMed ID: 31765986
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Plane wave imaging combined with eigenspace-based minimum variance beamforming using a ring array in ultrasound computed tomography.
    Jiang X; Xiao Y; Wang Y; Yu J; Zheng H
    Biomed Eng Online; 2019 Jan; 18(1):7. PubMed ID: 30674326
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dynamic Transmit-Receive Beamforming by Spatial Matched Filtering for Ultrasound Imaging with Plane Wave Transmission.
    Chen Y; Lou Y; Yen J
    Ultrason Imaging; 2017 Jul; 39(4):207-223. PubMed ID: 28627331
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Shape constrained fully convolutional DenseNet with adversarial training for multiorgan segmentation on head and neck CT and low-field MR images.
    Tong N; Gou S; Yang S; Cao M; Sheng K
    Med Phys; 2019 Jun; 46(6):2669-2682. PubMed ID: 31002188
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Pixel-Level Tissue Classification for Ultrasound Images.
    Pazinato DV; Stein BV; de Almeida WR; Werneck Rde O; Mendes Júnior PR; Penatti OA; Torres Rda S; Menezes FH; Rocha A
    IEEE J Biomed Health Inform; 2016 Jan; 20(1):256-67. PubMed ID: 25561598
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A KL Divergence-Based Loss for In Vivo Ultrafast Ultrasound Image Enhancement with Deep Learning.
    Viñals R; Thiran JP
    J Imaging; 2023 Nov; 9(12):. PubMed ID: 38132674
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Learning ultrasound rendering from cross-sectional model slices for simulated training.
    Zhang L; Portenier T; Goksel O
    Int J Comput Assist Radiol Surg; 2021 May; 16(5):721-730. PubMed ID: 33834348
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Generative Adversarial Networks for Noise Reduction in Low-Dose CT.
    Wolterink JM; Leiner T; Viergever MA; Isgum I
    IEEE Trans Med Imaging; 2017 Dec; 36(12):2536-2545. PubMed ID: 28574346
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Monitoring thermally-induced lesions with supersonic shear imaging.
    Bercoff J; Pernot M; Tanter M; Fink M
    Ultrason Imaging; 2004 Apr; 26(2):71-84. PubMed ID: 15344412
    [TBL] [Abstract][Full Text] [Related]  

  • 50. MedGAN: Medical image translation using GANs.
    Armanious K; Jiang C; Fischer M; Küstner T; Hepp T; Nikolaou K; Gatidis S; Yang B
    Comput Med Imaging Graph; 2020 Jan; 79():101684. PubMed ID: 31812132
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Adaptive Multifocus Beamforming for Contrast-Enhanced-Super-Resolution Ultrasound Imaging in Deep Tissue.
    Espindola D; Lin F; Soulioti DE; Dayton PA; Pinton GF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Dec; 65(12):2255-2263. PubMed ID: 30136938
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ultrafast Cardiac Imaging Using Deep Learning for Speckle-Tracking Echocardiography.
    Lu J; Millioz F; Varray F; Poree J; Provost J; Bernard O; Garcia D; Friboulet D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2023 Dec; 70(12):1761-1772. PubMed ID: 37862280
    [TBL] [Abstract][Full Text] [Related]  

  • 53. High-content image generation for drug discovery using generative adversarial networks.
    Hussain S; Anees A; Das A; Nguyen BP; Marzuki M; Lin S; Wright G; Singhal A
    Neural Netw; 2020 Dec; 132():353-363. PubMed ID: 32977280
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Improving realism in patient-specific abdominal ultrasound simulation using CycleGANs.
    Vitale S; Orlando JI; Iarussi E; Larrabide I
    Int J Comput Assist Radiol Surg; 2020 Feb; 15(2):183-192. PubMed ID: 31392671
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Optimized Plane Wave Imaging for Fast and High-Quality Ultrasound Imaging.
    Jensen J; Stuart MB; Jensen JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Nov; 63(11):1922-1934. PubMed ID: 27824568
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ultrasound Image Segmentation: A Deeply Supervised Network With Attention to Boundaries.
    Mishra D; Chaudhury S; Sarkar M; Soin AS
    IEEE Trans Biomed Eng; 2019 Jun; 66(6):1637-1648. PubMed ID: 30346279
    [TBL] [Abstract][Full Text] [Related]  

  • 57. 4D in vivo ultrafast ultrasound imaging using a row-column addressed matrix and coherently-compounded orthogonal plane waves.
    Flesch M; Pernot M; Provost J; Ferin G; Nguyen-Dinh A; Tanter M; Deffieux T
    Phys Med Biol; 2017 Jun; 62(11):4571-4588. PubMed ID: 28248655
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ultrafast photoacoustic imaging and its application to real-time 3D imaging with improved focusing.
    Wang YH; Li PC
    Ultrason Imaging; 2011 Jul; 33(3):189-96. PubMed ID: 21842582
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Contrast and Volume Rate Enhancement of 3-D Ultrasound Imaging Using Aperiodic Plane Wave Angles: A Simulation Study.
    Bae S; Park J; Song TK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Nov; 66(11):1731-1748. PubMed ID: 31380753
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Generative approach for data augmentation for deep learning-based bone surface segmentation from ultrasound images.
    Zaman A; Park SH; Bang H; Park CW; Park I; Joung S
    Int J Comput Assist Radiol Surg; 2020 Jun; 15(6):931-941. PubMed ID: 32399586
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.