BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 31675382)

  • 1. On the accuracy of displacement-based wave intensity analysis: Effect of vessel wall viscoelasticity and nonlinearity.
    Kang J; Aghilinejad A; Pahlevan NM
    PLoS One; 2019; 14(11):e0224390. PubMed ID: 31675382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pulsatile flow of non-Newtonian blood fluid inside stenosed arteries: Investigating the effects of viscoelastic and elastic walls, arteriosclerosis, and polycythemia diseases.
    Nejad AA; Talebi Z; Cheraghali D; Shahbani-Zahiri A; Norouzi M
    Comput Methods Programs Biomed; 2018 Feb; 154():109-122. PubMed ID: 29249336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of wave intensity in flexible tubes using measured diameter and velocity.
    Feng J; Khir AW
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():985-8. PubMed ID: 18002125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative study of viscoelastic arterial wall models in nonlinear one-dimensional finite element simulations of blood flow.
    Raghu R; Vignon-Clementel IE; Figueroa CA; Taylor CA
    J Biomech Eng; 2011 Aug; 133(8):081003. PubMed ID: 21950896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of vessel wall mechanics on non-invasive evaluation of cardiovascular intrinsic frequencies.
    Aghilinejad A; Alavi R; Rogers B; Amlani F; Pahlevan NM
    J Biomech; 2021 Dec; 129():110852. PubMed ID: 34775340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-Newtonian pulsatile blood flow through the stenosed arteries: comparison between the viscoelastic and elastic arterial wall in response to the alterations.
    Jannati S; Shahri MN; Jafarzadeh N; Firouzi F
    Biomed Phys Eng Express; 2023 Oct; 9(6):. PubMed ID: 37820604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A viscoelastic model of arterial wall motion in pulsatile flow: implications for Doppler ultrasound clutter assessment.
    Warriner RK; Johnston KW; Cobbold RS
    Physiol Meas; 2008 Feb; 29(2):157-79. PubMed ID: 18256449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of blood viscoelasticity on pulsatile flow in stationary and axially moving tubes.
    Sharp MK; Thurston GB; Moore JE
    Biorheology; 1996; 33(3):185-208. PubMed ID: 8935179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robustness of the P-U and lnD-U loop wave speed estimation methods: effects of the diastolic pressure decay and vessel wall non-linearities.
    Mynard JP; Davidson MR; Penny DJ; Smolich JJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6446-9. PubMed ID: 22255814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of blood flow rheology using second-grade viscoelastic model (Phan-Thien-Tanner) within carotid artery.
    Ramiar A; Larimi MM; Ranjbar AA
    Acta Bioeng Biomech; 2017; 19(3):27-41. PubMed ID: 29205216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A viscoelastic fluid-structure interaction model for carotid arteries under pulsatile flow.
    Wang Z; Wood NB; Xu XY
    Int J Numer Method Biomed Eng; 2015 May; 31(5):e02709. PubMed ID: 25630788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An experimental comparison of different methods of measuring wave propagation in viscoelastic tubes.
    Ursino M; Artioli E; Gallerani M
    J Biomech; 1994 Jul; 27(7):979-90. PubMed ID: 8063848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The reservoir-wave paradigm introduces error into arterial wave analysis: a computer modelling and in-vivo study.
    Mynard JP; Penny DJ; Davidson MR; Smolich JJ
    J Hypertens; 2012 Apr; 30(4):734-43. PubMed ID: 22278142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linear and nonlinear viscoelastic modeling of aorta and carotid pressure-area dynamics under in vivo and ex vivo conditions.
    Valdez-Jasso D; Bia D; Zócalo Y; Armentano RL; Haider MA; Olufsen MS
    Ann Biomed Eng; 2011 May; 39(5):1438-56. PubMed ID: 21203846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sustained vessel dilation induced by increased pulsatile perfusion of porcine carotid arteries in vitro.
    Recchia FA; Byrne BJ; Kass DA
    Acta Physiol Scand; 1999 May; 166(1):15-21. PubMed ID: 10372974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate.
    Swillens A; Degroote J; Vierendeels J; Lovstakken L; Segers P
    Med Phys; 2010 Aug; 37(8):4318-30. PubMed ID: 20879592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential and limitations of wave intensity analysis in coronary arteries.
    Siebes M; Kolyva C; Verhoeff BJ; Piek JJ; Spaan JA
    Med Biol Eng Comput; 2009 Feb; 47(2):233-9. PubMed ID: 19205771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CardioFAN: open source platform for noninvasive assessment of pulse transit time and pulsatile flow in hyperelastic vascular networks.
    Seyed Vahedein Y; Liberson AS
    Biomech Model Mechanobiol; 2019 Oct; 18(5):1529-1548. PubMed ID: 31076923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pulse wave velocity as a diagnostic index: the pitfalls of tethering versus stiffening of the arterial wall.
    Hodis S; Zamir M
    J Biomech; 2011 Apr; 44(7):1367-73. PubMed ID: 21334629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of viscosity and constraints on the dispersion and dissipation of waves in large blood vessels. II. Comparison of analysis with experiments.
    Jones E; Anliker M; Chang ID
    Biophys J; 1971 Dec; 11(12):1121-36. PubMed ID: 5134211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.