BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 31675461)

  • 1. Effect of backlash hysteresis of surgical tool bending joints on task performance in teleoperated flexible endoscopic robot.
    Kim H; Hwang M; Kim J; You JM; Lim CS; Kwon DS
    Int J Med Robot; 2020 Feb; 16(1):e2047. PubMed ID: 31675461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Motion compensated controller for a tendon-sheath-driven flexible endoscopic robot.
    Xu W; Poon CC; Yam Y; Chiu PW
    Int J Med Robot; 2017 Mar; 13(1):. PubMed ID: 27045665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The i
    Berthet-Rayne P; Gras G; Leibrandt K; Wisanuvej P; Schmitz A; Seneci CA; Yang GZ
    Ann Biomed Eng; 2018 Oct; 46(10):1663-1675. PubMed ID: 29948372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of tendon tension and hysteresis by tendon twisting and development of anti-twist tendon mechanism of robotic surgical instruments.
    Kong D; Yang UJ; Kim CK; Ahn J; Kwon DS
    Int J Med Robot; 2022 Apr; 18(2):e2357. PubMed ID: 34962681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. K-FLEX: A flexible robotic platform for scar-free endoscopic surgery.
    Hwang M; Kwon DS
    Int J Med Robot; 2020 Apr; 16(2):e2078. PubMed ID: 31945797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endoscopy robotics: Current and future applications.
    Boškoski I; Costamagna G
    Dig Endosc; 2019 Mar; 31(2):119-124. PubMed ID: 30171771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Three-Limb Teleoperated Robotic System with Foot Control for Flexible Endoscopic Surgery.
    Huang Y; Lai W; Cao L; Liu J; Li X; Burdet E; Phee SJ
    Ann Biomed Eng; 2021 Sep; 49(9):2282-2296. PubMed ID: 33834351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robotic endoscopy. A review of the literature.
    Visconti TAC; Otoch JP; Artifon ELA
    Acta Cir Bras; 2020; 35(2):e202000206. PubMed ID: 32348403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible robotic endoscopy: current and original devices.
    Kume K
    Comput Assist Surg (Abingdon); 2016 Dec; 21(1):150-159. PubMed ID: 27973963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of precision and speed in laparoscopic and robot-assisted surgical task performance.
    Zihni A; Gerull WD; Cavallo JA; Ge T; Ray S; Chiu J; Brunt LM; Awad MM
    J Surg Res; 2018 Mar; 223():29-33. PubMed ID: 29433882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Novel Telemanipulated Robotic Assistant for Surgical Endoscopy: Preclinical Application to ESD.
    Zorn L; Nageotte F; Zanne P; Legner A; Dallemagne B; Marescaux J; de Mathelin M
    IEEE Trans Biomed Eng; 2018 Apr; 65(4):797-808. PubMed ID: 28678698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Head-mounted interface for intuitive vision control and continuous surgical operation in a surgical robot system.
    Hong N; Kim M; Lee C; Kim S
    Med Biol Eng Comput; 2019 Mar; 57(3):601-614. PubMed ID: 30280331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensors for Expert Grip Force Profiling: Towards Benchmarking Manual Control of a Robotic Device for Surgical Tool Movements.
    de Mathelin M; Nageotte F; Zanne P; Dresp-Langley B
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31640204
    [No Abstract]   [Full Text] [Related]  

  • 14. Hybrid Robotics for Endoscopic Skull Base Surgery: Preclinical Evaluation and Surgeon First Impression.
    Zappa F; Mattavelli D; Madoglio A; Rampinelli V; Ferrari M; Tampalini F; Fontanella M; Nicolai P; Doglietto F;
    World Neurosurg; 2020 Feb; 134():e572-e580. PubMed ID: 31678446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of a novel flexible snake robot for endoluminal surgery.
    Patel N; Seneci CA; Shang J; Leibrandt K; Yang GZ; Darzi A; Teare J
    Surg Endosc; 2015 Nov; 29(11):3349-55. PubMed ID: 25669638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional posture estimation of robot forceps using endoscope with convolutional neural network.
    Mikada T; Kanno T; Kawase T; Miyazaki T; Kawashima K
    Int J Med Robot; 2020 Apr; 16(2):e2062. PubMed ID: 31913577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards Characterization and Adaptive Compensation of Backlash in a Novel Robotic Catheter System for Cardiovascular Interventions.
    Omisore OM; Han SP; Ren LX; Wang GS; Ou FL; Li H; Wang L
    IEEE Trans Biomed Circuits Syst; 2018 Aug; 12(4):824-838. PubMed ID: 29994773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Novel Position Compensation Scheme for Cable-Pulley Mechanisms Used in Laparoscopic Surgical Robots.
    Liang Y; Du Z; Wang W; Sun L
    Sensors (Basel); 2017 Sep; 17(10):. PubMed ID: 28974011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Actor-critic learning based coordinated control for a dual-arm robot with prescribed performance and unknown backlash-like hysteresis.
    Ouyang Y; Sun C; Dong L
    ISA Trans; 2022 Jul; 126():1-13. PubMed ID: 34446282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexible endoscopic robot.
    Lomanto D; Wijerathne S; Ho LK; Phee LS
    Minim Invasive Ther Allied Technol; 2015 Feb; 24(1):37-44. PubMed ID: 25627436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.