BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 31675800)

  • 1. Good and bad predictions: Assessing and improving the replication of chaotic attractors by means of reservoir computing.
    Haluszczynski A; Räth C
    Chaos; 2019 Oct; 29(10):103143. PubMed ID: 31675800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reducing network size and improving prediction stability of reservoir computing.
    Haluszczynski A; Aumeier J; Herteux J; Räth C
    Chaos; 2020 Jun; 30(6):063136. PubMed ID: 32611106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient forecasting of chaotic systems with block-diagonal and binary reservoir computing.
    Ma H; Prosperino D; Haluszczynski A; Räth C
    Chaos; 2023 Jun; 33(6):. PubMed ID: 37307160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of chaotic time series using recurrent neural networks and reservoir computing techniques: A comparative study.
    Shahi S; Fenton FH; Cherry EM
    Mach Learn Appl; 2022 Jun; 8():. PubMed ID: 35755176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting phase and sensing phase coherence in chaotic systems with machine learning.
    Zhang C; Jiang J; Qu SX; Lai YC
    Chaos; 2020 Aug; 30(8):083114. PubMed ID: 32872815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Breaking symmetries of the reservoir equations in echo state networks.
    Herteux J; Räth C
    Chaos; 2020 Dec; 30(12):123142. PubMed ID: 33380046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stabilizing machine learning prediction of dynamics: Novel noise-inspired regularization tested with reservoir computing.
    Wikner A; Harvey J; Girvan M; Hunt BR; Pomerance A; Antonsen T; Ott E
    Neural Netw; 2024 Feb; 170():94-110. PubMed ID: 37977092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data.
    Pathak J; Lu Z; Hunt BR; Girvan M; Ott E
    Chaos; 2017 Dec; 27(12):121102. PubMed ID: 29289043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting chaotic dynamics from incomplete input via reservoir computing with (D+1)-dimension input and output.
    Shi L; Yan Y; Wang H; Wang S; Qu SX
    Phys Rev E; 2023 May; 107(5-1):054209. PubMed ID: 37329034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A systematic exploration of reservoir computing for forecasting complex spatiotemporal dynamics.
    Platt JA; Penny SG; Smith TA; Chen TC; Abarbanel HDI
    Neural Netw; 2022 Sep; 153():530-552. PubMed ID: 35839598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Domain-driven models yield better predictions at lower cost than reservoir computers in Lorenz systems.
    Pyle R; Jovanovic N; Subramanian D; Palem KV; Patel AB
    Philos Trans A Math Phys Eng Sci; 2021 Apr; 379(2194):20200246. PubMed ID: 33583272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using a reservoir computer to learn chaotic attractors, with applications to chaos synchronization and cryptography.
    Antonik P; Gulina M; Pauwels J; Massar S
    Phys Rev E; 2018 Jul; 98(1-1):012215. PubMed ID: 30110744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dominant Attractor in Coupled Non-Identical Chaotic Systems.
    Nezhad Hajian D; Parthasarathy S; Parastesh F; Rajagopal K; Jafari S
    Entropy (Basel); 2022 Dec; 24(12):. PubMed ID: 36554212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust Optimization and Validation of Echo State Networks for learning chaotic dynamics.
    Racca A; Magri L
    Neural Netw; 2021 Oct; 142():252-268. PubMed ID: 34034072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constructing polynomial libraries for reservoir computing in nonlinear dynamical system forecasting.
    Ren HH; Bai YL; Fan MH; Ding L; Yue XX; Yu QH
    Phys Rev E; 2024 Feb; 109(2-1):024227. PubMed ID: 38491629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of temporal resolution on the reproduction of chaotic dynamics via reservoir computing.
    Tsuchiyama K; Röhm A; Mihana T; Horisaki R; Naruse M
    Chaos; 2023 Jun; 33(6):. PubMed ID: 37347641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The architecture of dynamic reservoir in the echo state network.
    Cui H; Liu X; Li L
    Chaos; 2012 Sep; 22(3):033127. PubMed ID: 23020466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measuring chaos in the Lorenz and Rössler models: Fidelity tests for reservoir computing.
    Scully JJ; Neiman AB; Shilnikov AL
    Chaos; 2021 Sep; 31(9):093121. PubMed ID: 34598438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Constraining chaos: Enforcing dynamical invariants in the training of reservoir computers.
    Platt JA; Penny SG; Smith TA; Chen TC; Abarbanel HDI
    Chaos; 2023 Oct; 33(10):. PubMed ID: 37788385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reducing echo state network size with controllability matrices.
    Whiteaker B; Gerstoft P
    Chaos; 2022 Jul; 32(7):073116. PubMed ID: 35907714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.