These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 31675814)

  • 1. On structural and dynamical factors determining the integrated basin instability of power-grid nodes.
    Kim H; Lee MJ; Lee SH; Son SW
    Chaos; 2019 Oct; 29(10):103132. PubMed ID: 31675814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Building blocks of the basin stability of power grids.
    Kim H; Lee SH; Holme P
    Phys Rev E; 2016 Jun; 93(6):062318. PubMed ID: 27415291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of network topology on synchrony of oscillatory power grids.
    Rohden M; Sorge A; Witthaut D; Timme M
    Chaos; 2014 Mar; 24(1):013123. PubMed ID: 24697385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of synchronization in two-layer power grids.
    Totz CH; Olmi S; Schöll E
    Phys Rev E; 2020 Aug; 102(2-1):022311. PubMed ID: 32942404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing power grid synchronization and stability through time-delayed feedback control.
    Taher H; Olmi S; Schöll E
    Phys Rev E; 2019 Dec; 100(6-1):062306. PubMed ID: 31962463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SYNCHRONIZATION OF HETEROGENEOUS OSCILLATORS UNDER NETWORK MODIFICATIONS: PERTURBATION AND OPTIMIZATION OF THE SYNCHRONY ALIGNMENT FUNCTION.
    Taylor D; Skardal PS; Sun J
    SIAM J Appl Math; 2016; 76(5):1984-2008. PubMed ID: 27872501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spreading of disturbances in realistic models of transmission grids in dependence on topology, inertia and heterogeneity.
    Nnoli KP; Kettemann S
    Sci Rep; 2021 Dec; 11(1):23742. PubMed ID: 34887453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Power-grid stability predictions using transferable machine learning.
    Yang SG; Kim BJ; Son SW; Kim H
    Chaos; 2021 Dec; 31(12):123127. PubMed ID: 34972349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Promoting synchrony of power grids by restructuring network topologies.
    Li X; Wei W; Zheng Z
    Chaos; 2023 Jun; 33(6):. PubMed ID: 37352505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple-node basin stability in complex dynamical networks.
    Mitra C; Choudhary A; Sinha S; Kurths J; Donner RV
    Phys Rev E; 2017 Mar; 95(3-1):032317. PubMed ID: 28415192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing synchronization stability in a multi-area power grid.
    Wang B; Suzuki H; Aihara K
    Sci Rep; 2016 May; 6():26596. PubMed ID: 27225708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamical modeling of cascading failures in the Turkish power grid.
    Schäfer B; Yalcin GC
    Chaos; 2019 Sep; 29(9):093134. PubMed ID: 31575158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability of synchrony against local intermittent fluctuations in tree-like power grids.
    Auer S; Hellmann F; Krause M; Kurths J
    Chaos; 2017 Dec; 27(12):127003. PubMed ID: 29289040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resilience of electricity grids against transmission line overloads under wind power injection at different nodes.
    Schiel C; Lind PG; Maass P
    Sci Rep; 2017 Sep; 7(1):11562. PubMed ID: 28912454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How dead ends undermine power grid stability.
    Menck PJ; Heitzig J; Kurths J; Joachim Schellnhuber H
    Nat Commun; 2014 Jun; 5():3969. PubMed ID: 24910217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparisons of purely topological model, betweenness based model and direct current power flow model to analyze power grid vulnerability.
    Ouyang M
    Chaos; 2013 Jun; 23(2):023114. PubMed ID: 23822479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Power grid stability under perturbation of single nodes: Effects of heterogeneity and internal nodes.
    Wolff MF; Lind PG; Maass P
    Chaos; 2018 Oct; 28(10):103120. PubMed ID: 30384670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of Different Coupling Modes on the Robustness of Smart Grid under Targeted Attack.
    Kang W; Hu G; Zhu P; Liu Q; Hang Z; Liu X
    Sensors (Basel); 2018 May; 18(6):. PubMed ID: 29795032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Propagation of wind-power-induced fluctuations in power grids.
    Haehne H; Schmietendorf K; Tamrakar S; Peinke J; Kettemann S
    Phys Rev E; 2019 May; 99(5-1):050301. PubMed ID: 31212474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting Braess's paradox of power grids using graph neural networks.
    Zou Y; Zhang H; Wang H; Hu J
    Chaos; 2024 Jan; 34(1):. PubMed ID: 38252784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.