BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 31676134)

  • 1. Inactivation of Bacteria by γ-Irradiation to Investigate the Interaction with Antimicrobial Peptides.
    Correa W; Brandenburg J; Behrends J; Heinbockel L; Reiling N; Paulowski L; Schwudke D; Stephan K; Martinez-de-Tejada G; Brandenburg K; Gutsmann T
    Biophys J; 2019 Nov; 117(10):1805-1819. PubMed ID: 31676134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binding of an antimicrobial peptide to bacterial cells: Interaction with different species, strains and cellular components.
    Savini F; Loffredo MR; Troiano C; Bobone S; Malanovic N; Eichmann TO; Caprio L; Canale VC; Park Y; Mangoni ML; Stella L
    Biochim Biophys Acta Biomembr; 2020 Aug; 1862(8):183291. PubMed ID: 32234322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cathelicidin Peptides Restrict Bacterial Growth via Membrane Perturbation and Induction of Reactive Oxygen Species.
    Rowe-Magnus DA; Kao AY; Prieto AC; Pu M; Kao C
    mBio; 2019 Sep; 10(5):. PubMed ID: 31506312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rationally designed antimicrobial peptides: Insight into the mechanism of eleven residue peptides against microbial infections.
    Pandit G; Biswas K; Ghosh S; Debnath S; Bidkar AP; Satpati P; Bhunia A; Chatterjee S
    Biochim Biophys Acta Biomembr; 2020 Apr; 1862(4):183177. PubMed ID: 31954105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calorimetry Methods to Study Membrane Interactions and Perturbations Induced by Antimicrobial Host Defense Peptides.
    Arias M; Prenner EJ; Vogel HJ
    Methods Mol Biol; 2017; 1548():119-140. PubMed ID: 28013501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of imperfectly amphipathic α-helical antimicrobial peptides with enhanced cell selectivity.
    Zhu X; Dong N; Wang Z; Ma Z; Zhang L; Ma Q; Shan A
    Acta Biomater; 2014 Jan; 10(1):244-57. PubMed ID: 24021230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of Lipid Composition, Physicochemical Interactions, and Membrane Mechanics in the Molecular Actions of Microbial Cyclic Lipopeptides.
    Balleza D; Alessandrini A; Beltrán García MJ
    J Membr Biol; 2019 Jun; 252(2-3):131-157. PubMed ID: 31098678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of interaction of optimized Limulus-derived cyclic peptides with endotoxins: thermodynamic, biophysical and microbiological analysis.
    Andrä J; Howe J; Garidel P; Rössle M; Richter W; Leiva-León J; Moriyon I; Bartels R; Gutsmann T; Brandenburg K
    Biochem J; 2007 Sep; 406(2):297-307. PubMed ID: 17501719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antimicrobial Peptides: Mechanisms of Action and Resistance.
    Bechinger B; Gorr SU
    J Dent Res; 2017 Mar; 96(3):254-260. PubMed ID: 27872334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parameters involved in antimicrobial and endotoxin detoxification activities of antimicrobial peptides.
    Rosenfeld Y; Sahl HG; Shai Y
    Biochemistry; 2008 Jun; 47(24):6468-78. PubMed ID: 18498177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of the antimicrobial peptides caerin 1.1 and aurein 1.2 with intact bacteria by
    Laadhari M; Arnold AA; Gravel AE; Separovic F; Marcotte I
    Biochim Biophys Acta; 2016 Dec; 1858(12):2959-2964. PubMed ID: 27639521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium adsorption and displacement: characterization of lipid monolayers and their interaction with membrane-active peptides/proteins.
    Hagge SO; Hammer MU; Wiese A; Seydel U; Gutsmann T
    BMC Biochem; 2006 May; 7():15. PubMed ID: 16672047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and membrane-disruption mechanism of charge-enriched AMPs exhibiting cell selectivity, high-salt resistance, and anti-biofilm properties.
    Han HM; Gopal R; Park Y
    Amino Acids; 2016 Feb; 48(2):505-22. PubMed ID: 26450121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative Evaluation of the Antimicrobial Activity of Different Antimicrobial Peptides against a Range of Pathogenic Bacteria.
    Ebbensgaard A; Mordhorst H; Overgaard MT; Nielsen CG; Aarestrup FM; Hansen EB
    PLoS One; 2015; 10(12):e0144611. PubMed ID: 26656394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Salt-resistant short antimicrobial peptides.
    Mohanram H; Bhattacharjya S
    Biopolymers; 2016 May; 106(3):345-56. PubMed ID: 26849911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. De novo synthetic short antimicrobial peptides against cariogenic bacteria.
    Wang Y; Fan Y; Zhou Z; Tu H; Ren Q; Wang X; Ding L; Zhou X; Zhang L
    Arch Oral Biol; 2017 Aug; 80():41-50. PubMed ID: 28366785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antimicrobial potential of lycosin-I, a cationic and amphiphilic peptide from the venom of the spider Lycosa singorensis.
    Tan H; Ding X; Meng S; Liu C; Wang H; Xia L; Liu Z; Liang S
    Curr Mol Med; 2013 Jul; 13(6):900-10. PubMed ID: 23638903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How do antimicrobial peptides disrupt the lipopolysaccharide membrane leaflet of Gram-negative bacteria?
    Gong H; Hu X; Zhang L; Fa K; Liao M; Liu H; Fragneto G; Campana M; Lu JR
    J Colloid Interface Sci; 2023 May; 637():182-192. PubMed ID: 36701864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. De novo generation of short antimicrobial peptides with enhanced stability and cell specificity.
    Kim H; Jang JH; Kim SC; Cho JH
    J Antimicrob Chemother; 2014 Jan; 69(1):121-32. PubMed ID: 23946320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. rBPI21 interacts with negative membranes endothermically promoting the formation of rigid multilamellar structures.
    Domingues MM; Bianconi ML; Barbosa LR; Santiago PS; Tabak M; Castanho MA; Itri R; Santos NC
    Biochim Biophys Acta; 2013 Nov; 1828(11):2419-27. PubMed ID: 23792068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.