BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 31676134)

  • 21. Dual action of BPC194: a membrane active peptide killing bacterial cells.
    Moiset G; Cirac AD; Stuart MC; Marrink SJ; Sengupta D; Poolman B
    PLoS One; 2013; 8(4):e61541. PubMed ID: 23620763
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bacterial Dye Release Measures in Response to Antimicrobial Peptides.
    Dumpati S; Dutta D
    Methods Mol Biol; 2022; 2402():285-290. PubMed ID: 34854051
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Methods for Investigating Biofilm Inhibition and Degradation by Antimicrobial Peptides.
    Segev-Zarko LA; Shai Y
    Methods Mol Biol; 2017; 1548():309-322. PubMed ID: 28013514
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Membrane interaction and antibacterial properties of chensinin-1, an antimicrobial peptide with atypical structural features from the skin of Rana chensinensis.
    Shang D; Sun Y; Wang C; Wei S; Ma L; Sun L
    Appl Microbiol Biotechnol; 2012 Dec; 96(6):1551-60. PubMed ID: 22581068
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Antimicrobial properties of membrane-active dodecapeptides derived from MSI-78.
    Monteiro C; Fernandes M; Pinheiro M; Maia S; Seabra CL; Ferreira-da-Silva F; Costa F; Reis S; Gomes P; Martins MC
    Biochim Biophys Acta; 2015 May; 1848(5):1139-46. PubMed ID: 25680229
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bacterial resistance to antimicrobial peptides.
    Abdi M; Mirkalantari S; Amirmozafari N
    J Pept Sci; 2019 Nov; 25(11):e3210. PubMed ID: 31637796
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanism of tachyplesin I injury to bacterial membranes and intracellular enzymes, determined by laser confocal scanning microscopy and flow cytometry.
    Hong J; Guan W; Jin G; Zhao H; Jiang X; Dai J
    Microbiol Res; 2015 Jan; 170():69-77. PubMed ID: 25267486
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Antimicrobial Peptide Structure and Mechanism of Action: A Focus on the Role of Membrane Structure.
    Lee TH; Hall KN; Aguilar MI
    Curr Top Med Chem; 2016; 16(1):25-39. PubMed ID: 26139112
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Highly Potent Antibacterial Organometallic Peptide Conjugates.
    Albada B; Metzler-Nolte N
    Acc Chem Res; 2017 Oct; 50(10):2510-2518. PubMed ID: 28953347
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interactions of two enantiomers of a designer antimicrobial peptide with structural components of the bacterial cell envelope.
    Ye Z; Aparicio C
    J Pept Sci; 2022 Jan; 28(1):e3299. PubMed ID: 33496073
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The secrets of dermcidin action.
    Burian M; Schittek B
    Int J Med Microbiol; 2015 Feb; 305(2):283-6. PubMed ID: 25596890
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Application of Antimicrobial Peptides of the Innate Immune System in Combination With Conventional Antibiotics-A Novel Way to Combat Antibiotic Resistance?
    Zharkova MS; Orlov DS; Golubeva OY; Chakchir OB; Eliseev IE; Grinchuk TM; Shamova OV
    Front Cell Infect Microbiol; 2019; 9():128. PubMed ID: 31114762
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biophysical characterization of the insertion of two potent antimicrobial peptides-Pin2 and its variant Pin2[GVG] in biological model membranes.
    Bertrand B; Munusamy S; Espinosa-Romero JF; Corzo G; Arenas Sosa I; Galván-Hernández A; Ortega-Blake I; Hernández-Adame PL; Ruiz-García J; Velasco-Bolom JL; Garduño-Juárez R; Munoz-Garay C
    Biochim Biophys Acta Biomembr; 2020 Feb; 1862(2):183105. PubMed ID: 31682816
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermodynamic and Biophysical Analysis of the Membrane-Association of a Histidine-Rich Peptide with Efficient Antimicrobial and Transfection Activities.
    Voievoda N; Schulthess T; Bechinger B; Seelig J
    J Phys Chem B; 2015 Jul; 119(30):9678-87. PubMed ID: 26134591
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Understanding membrane-active antimicrobial peptides.
    Huang HW; Charron NE
    Q Rev Biophys; 2017 Jan; 50():e10. PubMed ID: 29233222
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design of short membrane selective antimicrobial peptides containing tryptophan and arginine residues for improved activity, salt-resistance, and biocompatibility.
    Saravanan R; Li X; Lim K; Mohanram H; Peng L; Mishra B; Basu A; Lee JM; Bhattacharjya S; Leong SS
    Biotechnol Bioeng; 2014 Jan; 111(1):37-49. PubMed ID: 23860860
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In silico design of polycationic antimicrobial peptides active against Pseudomonas aeruginosa and Staphylococcus aureus.
    Hincapié O; Giraldo P; Orduz S
    Antonie Van Leeuwenhoek; 2018 Oct; 111(10):1871-1882. PubMed ID: 29626331
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Antimicrobial peptides (AMPs) produced by Saccharomyces cerevisiae induce alterations in the intracellular pH, membrane permeability and culturability of Hanseniaspora guilliermondii cells.
    Branco P; Viana T; Albergaria H; Arneborg N
    Int J Food Microbiol; 2015 Jul; 205():112-8. PubMed ID: 25897995
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of Hydrophobic Amino Acid Substitutions on Antimicrobial Peptide Behavior.
    Saint Jean KD; Henderson KD; Chrom CL; Abiuso LE; Renn LM; Caputo GA
    Probiotics Antimicrob Proteins; 2018 Sep; 10(3):408-419. PubMed ID: 29103131
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interaction of cationic antimicrobial peptides with Mycoplasma pulmonis.
    Park HJ; Kang KM; Dybvig K; Lee BL; Jung YW; Lee IH
    FEBS Lett; 2013 Oct; 587(20):3321-6. PubMed ID: 23994526
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.