These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 31676166)

  • 21. [Degradation of BPA in aqueous solution by interaction of photocatalytic oxidation and ferrate (VI) oxidation].
    Li C; Gao NY; Zhang KJ
    Huan Jing Ke Xue; 2009 Mar; 30(3):771-4. PubMed ID: 19432326
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrochemical degradation of the antibiotic metronidazole in aqueous solution by the Ti/SnO2-Sb-Ce anode.
    Cheng W; Yang M; Xie Y; Fang Z; Nan J; Tsang PE
    Environ Technol; 2013; 34(21-24):2977-87. PubMed ID: 24617056
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Oxidation of benzophenone-3 during water treatment with ferrate(VI).
    Yang B; Ying GG
    Water Res; 2013 May; 47(7):2458-66. PubMed ID: 23481287
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oxidation of antibiotics by ferrate(VI) in water: Evaluation of their removal efficiency and toxicity changes.
    Kovalakova P; Cizmas L; Feng M; McDonald TJ; Marsalek B; Sharma VK
    Chemosphere; 2021 Aug; 277():130365. PubMed ID: 34384193
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Treatment of selected pharmaceuticals by ferrate(VI): performance, kinetic studies and identification of oxidation products.
    Zhou Z; Jiang JQ
    J Pharm Biomed Anal; 2015 Mar; 106():37-45. PubMed ID: 25063450
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impact of inorganic ions and natural organic matter on arsenates removal by ferrate(VI): Understanding a complex effect of phosphates ions.
    Kolařík J; Prucek R; Tuček J; Filip J; Sharma VK; Zbořil R
    Water Res; 2018 Sep; 141():357-365. PubMed ID: 29804022
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrochemical Cr(VI) removal from aqueous media using titanium as anode: Simultaneous indirect electrochemical reduction of Cr(VI) and in-situ precipitation of Cr(III).
    Yao F; Jia M; Yang Q; Luo K; Chen F; Zhong Y; He L; Pi Z; Hou K; Wang D; Li X
    Chemosphere; 2020 Dec; 260():127537. PubMed ID: 32682133
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Addressing harmful algal blooms (HABs) impacts with ferrate(VI): Simultaneous removal of algal cells and toxins for drinking water treatment.
    Deng Y; Wu M; Zhang H; Zheng L; Acosta Y; Hsu TD
    Chemosphere; 2017 Nov; 186():757-761. PubMed ID: 28822256
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Kinetics modeling and reaction mechanism of ferrate(VI) oxidation of triclosan].
    Yang B; Ying GG; Zhao JL
    Huan Jing Ke Xue; 2011 Sep; 32(9):2543-8. PubMed ID: 22165218
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mitigation and degradation of natural organic matters (NOMs) during ferrate(VI) application for drinking water treatment.
    Song Y; Deng Y; Jung C
    Chemosphere; 2016 Mar; 146():145-53. PubMed ID: 26714297
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Engineering aspects of ferrate in water and wastewater treatment - a review.
    Yates BJ; Zboril R; Sharma VK
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(14):1603-14. PubMed ID: 25320847
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetics and mechanism of diclofenac removal using ferrate(VI): roles of Fe
    Zhao J; Wang Q; Fu Y; Peng B; Zhou G
    Environ Sci Pollut Res Int; 2018 Aug; 25(23):22998-23008. PubMed ID: 29858998
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reduction of ferrate(VI) and oxidation of cyanate in a Fe(VI)-TiO2-UV-NCO- system.
    Winkelmann K; Sharma VK; Lin Y; Shreve KA; Winkelmann C; Hoisington LJ; Yngard RA
    Chemosphere; 2008 Aug; 72(11):1694-9. PubMed ID: 18561980
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A simple treatment method for phenylarsenic compounds: Oxidation by ferrate (VI) and simultaneous removal of the arsenate released with in situ formed Fe(III) oxide-hydroxide.
    Xie X; Cheng H
    Environ Int; 2019 Jun; 127():730-741. PubMed ID: 31003056
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Understanding the electrode reaction process of dechlorination of 2,4-dichlorophenol over Ni/Fe nanoparticles: Effect of pH and 2,4-dichlorophenol concentration.
    Zheng K; Song Y; Wang X; Li X; Mao X; Wang D
    J Environ Sci (China); 2019 Oct; 84():13-20. PubMed ID: 31284904
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanoencapsulation of hexavalent chromium with nanoscale zero-valent iron: High resolution chemical mapping of the passivation layer.
    Huang XY; Ling L; Zhang WX
    J Environ Sci (China); 2018 May; 67():4-13. PubMed ID: 29778172
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ferrate(VI) oxidation of zinc-cyanide complex.
    Yngard R; Damrongsiri S; Osathaphan K; Sharma VK
    Chemosphere; 2007 Oct; 69(5):729-35. PubMed ID: 17597180
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrocoagulation of colloidal biogenic selenium.
    Staicu LC; van Hullebusch ED; Lens PN; Pilon-Smits EA; Oturan MA
    Environ Sci Pollut Res Int; 2015 Feb; 22(4):3127-37. PubMed ID: 25233921
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Formaldehyde removal from wastewater and air by using UV, ferrate(VI) and UV/ferrate(VI).
    Talaiekhozani A; Salari M; Talaei MR; Bagheri M; Eskandari Z
    J Environ Manage; 2016 Dec; 184(Pt 2):204-209. PubMed ID: 27717675
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Removal of chromium from Cr(VI) polluted wastewaters by reduction with scrap iron and subsequent precipitation of resulted cations.
    Gheju M; Balcu I
    J Hazard Mater; 2011 Nov; 196():131-8. PubMed ID: 21955659
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.