BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 31676292)

  • 1. Histone acetylation landscape in S. cerevisiae nhp6ab mutants reflects altered glucose metabolism.
    Durano D; Di Felice F; Caldarelli F; Lukacs A; D'Alfonso A; Saliola M; Sciubba F; Miccheli A; Zambelli F; Pavesi G; Bianchi ME; Camilloni G
    Biochim Biophys Acta Gen Subj; 2020 Jan; 1864(1):129454. PubMed ID: 31676292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel role for Nhp6 proteins in histone gene regulation in Saccharomyces cerevisiae.
    Durano D; Lukacs A; Di Felice F; Micheli G; Camilloni G
    Int J Biochem Cell Biol; 2017 Feb; 83():76-83. PubMed ID: 28025045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. H4K16 acetylation affects recombination and ncRNA transcription at rDNA in Saccharomyces cerevisiae.
    Cesarini E; D'Alfonso A; Camilloni G
    Mol Biol Cell; 2012 Jul; 23(14):2770-81. PubMed ID: 22621897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glucose starvation induces a switch in the histone acetylome for activation of gluconeogenic and fat metabolism genes.
    Hsieh WC; Sutter BM; Ruess H; Barnes SD; Malladi VS; Tu BP
    Mol Cell; 2022 Jan; 82(1):60-74.e5. PubMed ID: 34995509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic interactions between Nhp6 and Gcn5 with Mot1 and the Ccr4-Not complex that regulate binding of TATA-binding protein in Saccharomyces cerevisiae.
    Biswas D; Yu Y; Mitra D; Stillman DJ
    Genetics; 2006 Feb; 172(2):837-49. PubMed ID: 16272410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Promotion of Cell Viability and Histone Gene Expression by the Acetyltransferase Gcn5 and the Protein Phosphatase PP2A in Saccharomyces cerevisiae.
    Petty EL; Lafon A; Tomlinson SL; Mendelsohn BA; Pillus L
    Genetics; 2016 Aug; 203(4):1693-707. PubMed ID: 27317677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated Analysis of Acetyl-CoA and Histone Modification via Mass Spectrometry to Investigate Metabolically Driven Acetylation.
    Sidoli S; Trefely S; Garcia BA; Carrer A
    Methods Mol Biol; 2019; 1928():125-147. PubMed ID: 30725455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Histone Acetylation, Not Stoichiometry, Regulates Linker Histone Binding in
    Lawrence MBD; Coutin N; Choi JK; Martin BJE; Irwin NAT; Young B; Loewen C; Howe LJ
    Genetics; 2017 Sep; 207(1):347-355. PubMed ID: 28739661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acetyl-CoA carboxylase regulates global histone acetylation.
    Galdieri L; Vancura A
    J Biol Chem; 2012 Jul; 287(28):23865-76. PubMed ID: 22580297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATP-citrate lyase is essential for high glucose-induced histone hyperacetylation and fibrogenic gene upregulation in mesangial cells.
    Deb DK; Chen Y; Sun J; Wang Y; Li YC
    Am J Physiol Renal Physiol; 2017 Aug; 313(2):F423-F429. PubMed ID: 28490526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crosstalk between cellular metabolism and histone acetylation.
    Trefely S; Doan MT; Snyder NW
    Methods Enzymol; 2019; 626():1-21. PubMed ID: 31606071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TATA-binding protein mutants that are lethal in the absence of the Nhp6 high-mobility-group protein.
    Eriksson P; Biswas D; Yu Y; Stewart JM; Stillman DJ
    Mol Cell Biol; 2004 Jul; 24(14):6419-29. PubMed ID: 15226442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The silencing complex SAS-I links histone acetylation to the assembly of repressed chromatin by CAF-I and Asf1 in Saccharomyces cerevisiae.
    Meijsing SH; Ehrenhofer-Murray AE
    Genes Dev; 2001 Dec; 15(23):3169-82. PubMed ID: 11731480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. YHMI: a web tool to identify histone modifications and histone/chromatin regulators from a gene list in yeast.
    Wu WS; Tu HP; Chu YH; Nordling TEM; Tseng YY; Liaw HJ
    Database (Oxford); 2018 Jan; 2018():. PubMed ID: 30371756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role for Nhp6, Gcn5, and the Swi/Snf complex in stimulating formation of the TATA-binding protein-TFIIA-DNA complex.
    Biswas D; Imbalzano AN; Eriksson P; Yu Y; Stillman DJ
    Mol Cell Biol; 2004 Sep; 24(18):8312-21. PubMed ID: 15340090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolism and epigenetics.
    Janke R; Dodson AE; Rine J
    Annu Rev Cell Dev Biol; 2015; 31():473-496. PubMed ID: 26359776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptional Profiling of Cardiac Cells Links Age-Dependent Changes in Acetyl-CoA Signaling to Chromatin Modifications.
    Kurian J; Bohl V; Behanan M; Mohsin S; Khan M
    Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34209657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Histone methylation has dynamics distinct from those of histone acetylation in cell cycle reentry from quiescence.
    Mews P; Zee BM; Liu S; Donahue G; Garcia BA; Berger SL
    Mol Cell Biol; 2014 Nov; 34(21):3968-80. PubMed ID: 25154414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Histone post-translational modifications regulate transcription and silent chromatin in Saccharomyces cerevisiae.
    Emre NC; Berger SL
    Ernst Schering Res Found Workshop; 2006; (57):127-53. PubMed ID: 16568953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae.
    Weinert BT; Iesmantavicius V; Moustafa T; Schölz C; Wagner SA; Magnes C; Zechner R; Choudhary C
    Mol Syst Biol; 2014; 10(1):716. PubMed ID: 24489116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.