These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 31676427)

  • 1. Review: Antibacterial components of the Bivalve's immune system and the potential of freshwater bivalves as a source of new antibacterial compounds.
    Sousa H; Hinzmann M
    Fish Shellfish Immunol; 2020 Mar; 98():971-980. PubMed ID: 31676427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the hologenome concept in marine bivalvia: haemolymph microbiota as a pertinent source of probiotics for aquaculture.
    Desriac F; Le Chevalier P; Brillet B; Leguerinel I; Thuillier B; Paillard C; Fleury Y
    FEMS Microbiol Lett; 2014 Jan; 350(1):107-16. PubMed ID: 24286558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immune responses to infectious diseases in bivalves.
    Allam B; Raftos D
    J Invertebr Pathol; 2015 Oct; 131():121-36. PubMed ID: 26003824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacteria-hemocyte interactions and phagocytosis in marine bivalves.
    Canesi L; Gallo G; Gavioli M; Pruzzo C
    Microsc Res Tech; 2002 Jun; 57(6):469-76. PubMed ID: 12112429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applications of structure-based design to antibacterial drug discovery.
    Cain R; Narramore S; McPhillie M; Simmons K; Fishwick CW
    Bioorg Chem; 2014 Aug; 55():69-76. PubMed ID: 24962384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The search for novel antibiotics--strategies and current approaches].
    Schmid P
    Berl Munch Tierarztl Wochenschr; 2014; 127(11-12):498-512. PubMed ID: 25872259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An experimental analysis of the curative action of penicillin in acute bacterial infections. III. The effect of suppuration upon the antibacterial action of the drug.
    SMITH MR; WOOD WB
    J Exp Med; 1956 Apr; 103(4):509-22. PubMed ID: 13306859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Taking inventory: antibacterial agents currently at or beyond phase 1.
    Bush K; Macielag M; Weidner-Wells M
    Curr Opin Microbiol; 2004 Oct; 7(5):466-76. PubMed ID: 15451501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The immune system of the freshwater zebra mussel, Dreissena polymorpha, decrypted by proteogenomics of hemocytes and plasma compartments.
    Leprêtre M; Almunia C; Armengaud J; Salvador A; Geffard A; Palos-Ladeiro M
    J Proteomics; 2019 Jun; 202():103366. PubMed ID: 31015035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Current scenario of tetrazole hybrids for antibacterial activity.
    Gao F; Xiao J; Huang G
    Eur J Med Chem; 2019 Dec; 184():111744. PubMed ID: 31605865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The immune response and antibacterial therapy.
    Anuforom O; Wallace GR; Piddock LV
    Med Microbiol Immunol; 2015 Apr; 204(2):151-9. PubMed ID: 25189424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The history of the development and changes of quinolone antibacterial agents].
    Takahashi H; Hayakawa I; Akimoto T
    Yakushigaku Zasshi; 2003; 38(2):161-79. PubMed ID: 15143768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AntiBac-Pred: A Web Application for Predicting Antibacterial Activity of Chemical Compounds.
    Pogodin PV; Lagunin AA; Rudik AV; Druzhilovskiy DS; Filimonov DA; Poroikov VV
    J Chem Inf Model; 2019 Nov; 59(11):4513-4518. PubMed ID: 31661960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon nanotubes as anti-bacterial agents.
    Mocan T; Matea CT; Pop T; Mosteanu O; Buzoianu AD; Suciu S; Puia C; Zdrehus C; Iancu C; Mocan L
    Cell Mol Life Sci; 2017 Oct; 74(19):3467-3479. PubMed ID: 28536787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanomaterials for alternative antibacterial therapy.
    Hemeg HA
    Int J Nanomedicine; 2017; 12():8211-8225. PubMed ID: 29184409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phage-Derived Antibacterials: Harnessing the Simplicity, Plasticity, and Diversity of Phages.
    Kim BO; Kim ES; Yoo YJ; Bae HW; Chung IY; Cho YH
    Viruses; 2019 Mar; 11(3):. PubMed ID: 30889807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antibacterial peptides isolated from insects.
    Otvos L
    J Pept Sci; 2000 Oct; 6(10):497-511. PubMed ID: 11071264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Agents that inhibit bacterial biofilm formation.
    Rabin N; Zheng Y; Opoku-Temeng C; Du Y; Bonsu E; Sintim HO
    Future Med Chem; 2015; 7(5):647-71. PubMed ID: 25921403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [In vitro evaluation of antibacterial substances produced by bacteria isolated from different marine organisms].
    Castillo I; Lodeiros C; Núñez M; Campos I
    Rev Biol Trop; 2001; 49(3-4):1213-22. PubMed ID: 12189804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bio-mimicking nano and micro-structured surface fabrication for antibacterial properties in medical implants.
    Jaggessar A; Shahali H; Mathew A; Yarlagadda PKDV
    J Nanobiotechnology; 2017 Oct; 15(1):64. PubMed ID: 28969628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.