BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 31676663)

  • 1. New insights into transcriptional reprogramming during cellular stress.
    Himanen SV; Sistonen L
    J Cell Sci; 2019 Nov; 132(21):. PubMed ID: 31676663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptional reprogramming at the intersection of the heat shock response and proteostasis.
    Pessa JC; Joutsen J; Sistonen L
    Mol Cell; 2024 Jan; 84(1):80-93. PubMed ID: 38103561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The heat shock response: A case study of chromatin dynamics in gene regulation.
    Teves SS; Henikoff S
    Biochem Cell Biol; 2013 Feb; 91(1):42-8. PubMed ID: 23442140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global SUMOylation on active chromatin is an acute heat stress response restricting transcription.
    Niskanen EA; Malinen M; Sutinen P; Toropainen S; Paakinaho V; Vihervaara A; Joutsen J; Kaikkonen MU; Sistonen L; Palvimo JJ
    Genome Biol; 2015 Jul; 16(1):153. PubMed ID: 26259101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stress-induced transcriptional memory accelerates promoter-proximal pause release and decelerates termination over mitotic divisions.
    Vihervaara A; Mahat DB; Himanen SV; Blom MAH; Lis JT; Sistonen L
    Mol Cell; 2021 Apr; 81(8):1715-1731.e6. PubMed ID: 33784494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional response to stress is pre-wired by promoter and enhancer architecture.
    Vihervaara A; Mahat DB; Guertin MJ; Chu T; Danko CG; Lis JT; Sistonen L
    Nat Commun; 2017 Aug; 8(1):255. PubMed ID: 28811569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular mechanisms driving transcriptional stress responses.
    Vihervaara A; Duarte FM; Lis JT
    Nat Rev Genet; 2018 Jun; 19(6):385-397. PubMed ID: 29556092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The heat shock factor HSF1 juggles protein quality control and metabolic regulation.
    Cantó C
    J Cell Biol; 2017 Mar; 216(3):551-553. PubMed ID: 28183718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HSFA1a modulates plant heat stress responses and alters the 3D chromatin organization of enhancer-promoter interactions.
    Huang Y; An J; Sircar S; Bergis C; Lopes CD; He X; Da Costa B; Tan FQ; Bazin J; Antunez-Sanchez J; Mammarella MF; Devani RS; Brik-Chaouche R; Bendahmane A; Frugier F; Xia C; Rothan C; Probst AV; Mohamed Z; Bergounioux C; Delarue M; Zhang Y; Zheng S; Crespi M; Fragkostefanakis S; Mahfouz MM; Ariel F; Gutierrez-Marcos J; Raynaud C; Latrasse D; Benhamed M
    Nat Commun; 2023 Jan; 14(1):469. PubMed ID: 36709329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Regulation of heat shock gene expression in response to stress].
    Garbuz DG
    Mol Biol (Mosk); 2017; 51(3):400-417. PubMed ID: 28707656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuronal cells show regulatory differences in the hsp70 gene response.
    Kaarniranta K; Oksala N; Karjalainen HM; Suuronen T; Sistonen L; Helminen HJ; Salminen A; Lammi MJ
    Brain Res Mol Brain Res; 2002 May; 101(1-2):136-40. PubMed ID: 12007842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of heat shock transcription factor 1 in the genome-wide regulation of the mammalian heat shock response.
    Trinklein ND; Murray JI; Hartman SJ; Botstein D; Myers RM
    Mol Biol Cell; 2004 Mar; 15(3):1254-61. PubMed ID: 14668476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of heat shock transcription factors and their roles in physiology and disease.
    Gomez-Pastor R; Burchfiel ET; Thiele DJ
    Nat Rev Mol Cell Biol; 2018 Jan; 19(1):4-19. PubMed ID: 28852220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heat Stress-Induced Transcriptional Repression.
    Kantidze OL; Velichko AK; Razin SV
    Biochemistry (Mosc); 2015 Aug; 80(8):990-3. PubMed ID: 26547066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of Saccharomyces cerevisiae genome for the distributions of stress-response elements potentially affecting gene expression by transcriptional interference.
    Liu Y; Ye S; Erkine AM
    In Silico Biol; 2009; 9(5-6):379-89. PubMed ID: 22430439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Rpd3L HDAC complex is essential for the heat stress response in yeast.
    Ruiz-Roig C; Viéitez C; Posas F; de Nadal E
    Mol Microbiol; 2010 May; 76(4):1049-62. PubMed ID: 20398213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-resolution localization of Drosophila Spt5 and Spt6 at heat shock genes in vivo: roles in promoter proximal pausing and transcription elongation.
    Andrulis ED; Guzmán E; Döring P; Werner J; Lis JT
    Genes Dev; 2000 Oct; 14(20):2635-49. PubMed ID: 11040217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptional regulation and binding of heat shock factor 1 and heat shock factor 2 to 32 human heat shock genes during thermal stress and differentiation.
    Trinklein ND; Chen WC; Kingston RE; Myers RM
    Cell Stress Chaperones; 2004 Mar; 9(1):21-8. PubMed ID: 15270074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The transcriptional regulator of the chaperone response HSF1 controls hepatic bioenergetics and protein homeostasis.
    Qiao A; Jin X; Pang J; Moskophidis D; Mivechi NF
    J Cell Biol; 2017 Mar; 216(3):723-741. PubMed ID: 28183717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RhoA Activation Sensitizes Cells to Proteotoxic Stimuli by Abrogating the HSF1-Dependent Heat Shock Response.
    Meijering RA; Wiersma M; van Marion DM; Zhang D; Hoogstra-Berends F; Dijkhuis AJ; Schmidt M; Wieland T; Kampinga HH; Henning RH; Brundel BJ
    PLoS One; 2015; 10(7):e0133553. PubMed ID: 26193369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.