These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 31676685)

  • 1. Desumoylation of RNA polymerase III lies at the core of the Sumo stress response in yeast.
    Nguéa P A; Robertson J; Herrera MC; Chymkowitch P; Enserink JM
    J Biol Chem; 2019 Dec; 294(49):18784-18795. PubMed ID: 31676685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TORC1-dependent sumoylation of Rpc82 promotes RNA polymerase III assembly and activity.
    Chymkowitch P; Nguéa P A; Aanes H; Robertson J; Klungland A; Enserink JM
    Proc Natl Acad Sci U S A; 2017 Jan; 114(5):1039-1044. PubMed ID: 28096404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The S. cerevisiae SUMO stress response is a conjugation-deconjugation cycle that targets the transcription machinery.
    Lewicki MC; Srikumar T; Johnson E; Raught B
    J Proteomics; 2015 Apr; 118():39-48. PubMed ID: 25434491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Defective RNA polymerase III is negatively regulated by the SUMO-Ubiquitin-Cdc48 pathway.
    Wang Z; Wu C; Aslanian A; Yates JR; Hunter T
    Elife; 2018 Sep; 7():. PubMed ID: 30192228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SUMO targeting of a stress-tolerant Ulp1 SUMO protease.
    Peek J; Harvey C; Gray D; Rosenberg D; Kolla L; Levy-Myers R; Yin R; McMurry JL; Kerscher O
    PLoS One; 2018; 13(1):e0191391. PubMed ID: 29351565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactome of the yeast RNA polymerase III transcription machinery constitutes several chromatin modifiers and regulators of the genes transcribed by RNA polymerase II.
    Bhalla P; Vernekar DV; Gilquin B; Couté Y; Bhargava P
    Gene; 2019 Jun; 702():205-214. PubMed ID: 30593915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global analysis of protein sumoylation in Saccharomyces cerevisiae.
    Wohlschlegel JA; Johnson ES; Reed SI; Yates JR
    J Biol Chem; 2004 Oct; 279(44):45662-8. PubMed ID: 15326169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential Phosphorylation of RNA Polymerase III and the Initiation Factor TFIIIB in Saccharomyces cerevisiae.
    Lee J; Moir RD; Willis IM
    PLoS One; 2015; 10(5):e0127225. PubMed ID: 25970584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of tRNA synthesis by the general transcription factors of RNA polymerase III - TFIIIB and TFIIIC, and by the MAF1 protein.
    Graczyk D; Cieśla M; Boguta M
    Biochim Biophys Acta Gene Regul Mech; 2018 Apr; 1861(4):320-329. PubMed ID: 29378333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SUMO Pathway Modulation of Regulatory Protein Binding at the Ribosomal DNA Locus in Saccharomyces cerevisiae.
    Gillies J; Hickey CM; Su D; Wu Z; Peng J; Hochstrasser M
    Genetics; 2016 Apr; 202(4):1377-94. PubMed ID: 26837752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Vitro Studies Reveal a Sequential Mode of Chain Processing by the Yeast SUMO (Small Ubiquitin-related Modifier)-specific Protease Ulp2.
    Eckhoff J; Dohmen RJ
    J Biol Chem; 2015 May; 290(19):12268-81. PubMed ID: 25833950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ubiquitin-dependent proteolytic control of SUMO conjugates.
    Uzunova K; Göttsche K; Miteva M; Weisshaar SR; Glanemann C; Schnellhardt M; Niessen M; Scheel H; Hofmann K; Johnson ES; Praefcke GJ; Dohmen RJ
    J Biol Chem; 2007 Nov; 282(47):34167-75. PubMed ID: 17728242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome maintenance in Saccharomyces cerevisiae: the role of SUMO and SUMO-targeted ubiquitin ligases.
    Jalal D; Chalissery J; Hassan AH
    Nucleic Acids Res; 2017 Mar; 45(5):2242-2261. PubMed ID: 28115630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Defining the SUMO-modified proteome by multiple approaches in Saccharomyces cerevisiae.
    Hannich JT; Lewis A; Kroetz MB; Li SJ; Heide H; Emili A; Hochstrasser M
    J Biol Chem; 2005 Feb; 280(6):4102-10. PubMed ID: 15590687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maf1, a general negative regulator of RNA polymerase III in yeast.
    Boguta M
    Biochim Biophys Acta; 2013; 1829(3-4):376-84. PubMed ID: 23201230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of sumoylated proteins by systematic immunoprecipitation of the budding yeast proteome.
    Wykoff DD; O'Shea EK
    Mol Cell Proteomics; 2005 Jan; 4(1):73-83. PubMed ID: 15596868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Vitro Characterization of Chain Depolymerization Activities of SUMO-Specific Proteases.
    Eckhoff J; Dohmen RJ
    Methods Mol Biol; 2016; 1475():123-35. PubMed ID: 27631802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maf1, repressor of tRNA transcription, is involved in the control of gluconeogenetic genes in Saccharomyces cerevisiae.
    Morawiec E; Wichtowska D; Graczyk D; Conesa C; Lefebvre O; Boguta M
    Gene; 2013 Aug; 526(1):16-22. PubMed ID: 23657116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Slx5/Slx8-dependent ubiquitin hotspots on chromatin contribute to stress tolerance.
    Höpfler M; Kern MJ; Straub T; Prytuliak R; Habermann BH; Pfander B; Jentsch S
    EMBO J; 2019 Jun; 38(11):. PubMed ID: 31015336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noncovalent binding of small ubiquitin-related modifier (SUMO) protease to SUMO is necessary for enzymatic activities and cell growth.
    Ihara M; Koyama H; Uchimura Y; Saitoh H; Kikuchi A
    J Biol Chem; 2007 Jun; 282(22):16465-75. PubMed ID: 17428805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.