These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 31676734)

  • 1. Metabolic dependencies and vulnerabilities in leukemia.
    Rashkovan M; Ferrando A
    Genes Dev; 2019 Nov; 33(21-22):1460-1474. PubMed ID: 31676734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploiting metabolic vulnerabilities for personalized therapy in acute myeloid leukemia.
    Stuani L; Sabatier M; Sarry JE
    BMC Biol; 2019 Jul; 17(1):57. PubMed ID: 31319822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolism in stem cell-driven leukemia: parallels between hematopoiesis and immunity.
    Rattigan KM; Zarou MM; Helgason GV
    Blood; 2023 May; 141(21):2553-2565. PubMed ID: 36634302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iron and leukemia: new insights for future treatments.
    Wang F; Lv H; Zhao B; Zhou L; Wang S; Luo J; Liu J; Shang P
    J Exp Clin Cancer Res; 2019 Sep; 38(1):406. PubMed ID: 31519186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy metabolism of leukemia cells: glycolysis versus oxidative phosphorylation.
    Suganuma K; Miwa H; Imai N; Shikami M; Gotou M; Goto M; Mizuno S; Takahashi M; Yamamoto H; Hiramatsu A; Wakabayashi M; Watarai M; Hanamura I; Imamura A; Mihara H; Nitta M
    Leuk Lymphoma; 2010 Nov; 51(11):2112-9. PubMed ID: 20860495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic characterization of imatinib-resistant BCR-ABL T315I chronic myeloid leukemia cells indicates down-regulation of glycolytic pathway and low ROS production.
    Ko BW; Han J; Heo JY; Jang Y; Kim SJ; Kim J; Lee MJ; Ryu MJ; Song IC; Jo YS; Kweon GR
    Leuk Lymphoma; 2016 Sep; 57(9):2180-8. PubMed ID: 26854822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial and Metabolic Pathways Regulate Nuclear Gene Expression to Control Differentiation, Stem Cell Function, and Immune Response in Leukemia.
    Egan G; Khan DH; Lee JB; Mirali S; Zhang L; Schimmer AD
    Cancer Discov; 2021 May; 11(5):1052-1066. PubMed ID: 33504581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oncogenic Mechanisms and Therapeutic Targeting of Metabolism in Leukemia and Lymphoma.
    Stahl M; Epstein-Peterson ZD; Intlekofer AM
    Cold Spring Harb Perspect Med; 2021 Jul; 11(7):. PubMed ID: 32816875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel Therapeutics Affecting Metabolic Pathways.
    Punekar S; Cho DC
    Am Soc Clin Oncol Educ Book; 2019 Jan; 39():e79-e87. PubMed ID: 31099667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drug discovery strategies in the field of tumor energy metabolism: Limitations by metabolic flexibility and metabolic resistance to chemotherapy.
    Amoedo ND; Obre E; Rossignol R
    Biochim Biophys Acta Bioenerg; 2017 Aug; 1858(8):674-685. PubMed ID: 28213330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-scale computational study of the Warburg effect, reverse Warburg effect and glutamine addiction in solid tumors.
    Shan M; Dai D; Vudem A; Varner JD; Stroock AD
    PLoS Comput Biol; 2018 Dec; 14(12):e1006584. PubMed ID: 30532226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emerging Approaches for Targeting Metabolic Vulnerabilities in Malignant Glioma.
    Clark PM; Mai WX; Cloughesy TF; Nathanson DA
    Curr Neurol Neurosci Rep; 2016 Feb; 16(2):17. PubMed ID: 26759318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative stress and hypoxia in normal and leukemic stem cells.
    Testa U; Labbaye C; Castelli G; Pelosi E
    Exp Hematol; 2016 Jul; 44(7):540-60. PubMed ID: 27179622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic reprogramming in cancer cells: glycolysis, glutaminolysis, and Bcl-2 proteins as novel therapeutic targets for cancer.
    Li C; Zhang G; Zhao L; Ma Z; Chen H
    World J Surg Oncol; 2016 Jan; 14(1):15. PubMed ID: 26791262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic reprogramming and redox adaptation in sorafenib-resistant leukemia cells: detected by untargeted metabolomics and stable isotope tracing analysis.
    You X; Jiang W; Lu W; Zhang H; Yu T; Tian J; Wen S; Garcia-Manero G; Huang P; Hu Y
    Cancer Commun (Lond); 2019 Apr; 39(1):17. PubMed ID: 30947742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Metabolic regulation specific to leukemia stem cells].
    Naka K
    Rinsho Ketsueki; 2017; 58(10):1818-1827. PubMed ID: 28978820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Importance of Cellular Metabolic Pathways in Pathogenesis and Selective Treatments of Hematological Malignancies.
    Soltani M; Zhao Y; Xia Z; Ganjalikhani Hakemi M; Bazhin AV
    Front Oncol; 2021; 11():767026. PubMed ID: 34868994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of a synergistic combination of dimethylaminoparthenolide and shikonin alters metabolism and inhibits proliferation of pediatric precursor-B cell acute lymphoblastic leukemia.
    Sweeney SR; Collins M; Pandey R; Chiou J; Lodi A; Tiziani S
    Mol Carcinog; 2020 Apr; 59(4):399-411. PubMed ID: 32027051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic Reprogramming and Redox Signaling in Pulmonary Hypertension.
    Plecitá-Hlavatá L; D'alessandro A; El Kasmi K; Li M; Zhang H; Ježek P; Stenmark KR
    Adv Exp Med Biol; 2017; 967():241-260. PubMed ID: 29047090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression.
    Vaupel P; Schmidberger H; Mayer A
    Int J Radiat Biol; 2019 Jul; 95(7):912-919. PubMed ID: 30822194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.