These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
328 related articles for article (PubMed ID: 31676735)
21. Dynamic proteome profiling of human pluripotent stem cell-derived pancreatic progenitors. Loo LSW; Vethe H; Soetedjo AAP; Paulo JA; Jasmen J; Jackson N; Bjørlykke Y; Valdez IA; Vaudel M; Barsnes H; Gygi SP; Raeder H; Teo AKK; Kulkarni RN Stem Cells; 2020 Apr; 38(4):542-555. PubMed ID: 31828876 [TBL] [Abstract][Full Text] [Related]
22. Enhanced differentiation of human pluripotent stem cells into pancreatic progenitors co-expressing PDX1 and NKX6.1. Memon B; Karam M; Al-Khawaga S; Abdelalim EM Stem Cell Res Ther; 2018 Jan; 9(1):15. PubMed ID: 29361979 [TBL] [Abstract][Full Text] [Related]
23. GATA6 Cooperates with EOMES/SMAD2/3 to Deploy the Gene Regulatory Network Governing Human Definitive Endoderm and Pancreas Formation. Chia CY; Madrigal P; Denil SLIJ; Martinez I; Garcia-Bernardo J; El-Khairi R; Chhatriwala M; Shepherd MH; Hattersley AT; Dunn NR; Vallier L Stem Cell Reports; 2019 Jan; 12(1):57-70. PubMed ID: 30629940 [TBL] [Abstract][Full Text] [Related]
24. Human pluripotent stem cell based islet models for diabetes research. Balboa D; Otonkoski T Best Pract Res Clin Endocrinol Metab; 2015 Dec; 29(6):899-909. PubMed ID: 26696518 [TBL] [Abstract][Full Text] [Related]
25. Pancreatic development and disease. Cano DA; Hebrok M; Zenker M Gastroenterology; 2007 Feb; 132(2):745-62. PubMed ID: 17258745 [No Abstract] [Full Text] [Related]
27. Biliary tree stem cells, precursors to pancreatic committed progenitors: evidence for possible life-long pancreatic organogenesis. Wang Y; Lanzoni G; Carpino G; Cui CB; Dominguez-Bendala J; Wauthier E; Cardinale V; Oikawa T; Pileggi A; Gerber D; Furth ME; Alvaro D; Gaudio E; Inverardi L; Reid LM Stem Cells; 2013 Sep; 31(9):1966-79. PubMed ID: 23847135 [TBL] [Abstract][Full Text] [Related]
28. Recapitulating human myogenesis ex vivo using human pluripotent stem cells. Chien P; Xi H; Pyle AD Exp Cell Res; 2022 Feb; 411(2):112990. PubMed ID: 34973262 [TBL] [Abstract][Full Text] [Related]
29. A new hypothetical model for pancreatic development based on change in the cell division orientation. Vakilian M; Ghaedi K Gene; 2021 Jun; 785():145607. PubMed ID: 33775847 [TBL] [Abstract][Full Text] [Related]
30. Reconstructing human pancreatic differentiation by mapping specific cell populations during development. Ramond C; Glaser N; Berthault C; Ameri J; Kirkegaard JS; Hansson M; Honoré C; Semb H; Scharfmann R Elife; 2017 Jul; 6():. PubMed ID: 28731406 [TBL] [Abstract][Full Text] [Related]
31. In vitro generation of pancreatic β-cells for diabetes treatment. I. β-like cells derived from human pluripotent stem cells. Cierpka-Kmiec K; Wronska A; Kmiec Z Folia Histochem Cytobiol; 2019; 57(1):1-14. PubMed ID: 30869153 [TBL] [Abstract][Full Text] [Related]
32. Pathways governing development of stem cell-derived pancreatic β cells: lessons from embryogenesis. Al-Khawaga S; Memon B; Butler AE; Taheri S; Abou-Samra AB; Abdelalim EM Biol Rev Camb Philos Soc; 2018 Feb; 93(1):364-389. PubMed ID: 28643455 [TBL] [Abstract][Full Text] [Related]
33. A new shortened protocol to obtain islet-like cells from hESC-derived ductal cells. Vakilian M; Hmadcha A; Soria B; Ghaedi K In Vitro Cell Dev Biol Anim; 2021 Jun; 57(6):587-597. PubMed ID: 34212340 [TBL] [Abstract][Full Text] [Related]
34. An arduous journey from human pluripotent stem cells to functional pancreatic β cells. Loo LSW; Lau HH; Jasmen JB; Lim CS; Teo AKK Diabetes Obes Metab; 2018 Jan; 20(1):3-13. PubMed ID: 28474496 [TBL] [Abstract][Full Text] [Related]
35. [Differentiation of pluripotent stem cells into pancreatic lineages]. Mfopou JK; Bouwens L Med Sci (Paris); 2013; 29(8-9):736-43. PubMed ID: 24005628 [TBL] [Abstract][Full Text] [Related]
36. Differentiated human stem cells resemble fetal, not adult, β cells. Hrvatin S; O'Donnell CW; Deng F; Millman JR; Pagliuca FW; DiIorio P; Rezania A; Gifford DK; Melton DA Proc Natl Acad Sci U S A; 2014 Feb; 111(8):3038-43. PubMed ID: 24516164 [TBL] [Abstract][Full Text] [Related]
37. Differentiation of Human Pluripotent Stem Cells into Pancreatic Beta-cell Precursors in a 2D Culture System. Memon B; Abdelalim EM J Vis Exp; 2021 Dec; (178):. PubMed ID: 34978292 [TBL] [Abstract][Full Text] [Related]
38. Long-Term Culture of Self-renewing Pancreatic Progenitors Derived from Human Pluripotent Stem Cells. Trott J; Tan EK; Ong S; Titmarsh DM; Denil SLIJ; Giam M; Wong CK; Wang J; Shboul M; Eio M; Cooper-White J; Cool SM; Rancati G; Stanton LW; Reversade B; Dunn NR Stem Cell Reports; 2017 Jun; 8(6):1675-1688. PubMed ID: 28591650 [TBL] [Abstract][Full Text] [Related]
39. Human Pluripotent Stem Cells: A Unique Tool for Toxicity Testing in Pancreatic Progenitor and Endocrine Cells. MacFarlane EM; Bruin JE Front Endocrinol (Lausanne); 2020; 11():604998. PubMed ID: 33542706 [TBL] [Abstract][Full Text] [Related]
40. Application of human pluripotent stem cells and pluripotent stem cell-derived cellular models for assessing drug toxicity. Apáti Á; Varga N; Berecz T; Erdei Z; Homolya L; Sarkadi B Expert Opin Drug Metab Toxicol; 2019 Jan; 15(1):61-75. PubMed ID: 30526128 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]