BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 31676911)

  • 1. 3D printing technology and its role in urological training.
    Smith B; Dasgupta P
    World J Urol; 2020 Oct; 38(10):2385-2391. PubMed ID: 31676911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Current applications of three-dimensional printing in urology.
    Chen MY; Skewes J; Desselle M; Wong C; Woodruff MA; Dasgupta P; Rukin NJ
    BJU Int; 2020 Jan; 125(1):17-27. PubMed ID: 31622020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of Three-dimensional Printing in Urology: State of the Art and Future Perspectives. A Systematic Review by ESUT-YAUWP Group.
    Cacciamani GE; Okhunov Z; Meneses AD; Rodriguez-Socarras ME; Rivas JG; Porpiglia F; Liatsikos E; Veneziano D
    Eur Urol; 2019 Aug; 76(2):209-221. PubMed ID: 31109814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The CREST Simulation Development Process: Training the Next Generation.
    Sweet RM
    J Endourol; 2017 Apr; 31(S1):S69-S75. PubMed ID: 27633465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of 3-dimensional printing technology and silicone modeling in surgical simulation: development and face validation in pediatric laparoscopic pyeloplasty.
    Cheung CL; Looi T; Lendvay TS; Drake JM; Farhat WA
    J Surg Educ; 2014; 71(5):762-7. PubMed ID: 24776857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Innovations in Urologic Surgical Training.
    Ma R; Reddy S; Vanstrum EB; Hung AJ
    Curr Urol Rep; 2021 Mar; 22(4):26. PubMed ID: 33712963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel Education and Simulation Tools in Urologic Training.
    Childs BS; Manganiello MD; Korets R
    Curr Urol Rep; 2019 Nov; 20(12):81. PubMed ID: 31782033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three dimensional models in uro-oncology: a future built with additive fabrication.
    Manning TG; O'Brien JS; Christidis D; Perera M; Coles-Black J; Chuen J; Bolton DM; Lawrentschuk N
    World J Urol; 2018 Apr; 36(4):557-563. PubMed ID: 29372352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Simulation-based training in urology: A systematic literature review].
    Fiard G; Descotes JL; Troccaz J
    Prog Urol; 2019; 29(6):295-311. PubMed ID: 31047788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of a Full-Immersion Simulation Platform for Percutaneous Nephrolithotomy Using Three-Dimensional Printing Technology.
    Ghazi A; Campbell T; Melnyk R; Feng C; Andrusco A; Stone J; Erturk E
    J Endourol; 2017 Dec; 31(12):1314-1320. PubMed ID: 29048214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robotic dismembered pyeloplasty surgical simulation using a 3D-printed silicone-based model: development, face validation and crowdsourced learning outcomes assessment.
    Bendre HH; Rajender A; Barbosa PV; Wason SEL
    J Robot Surg; 2020 Dec; 14(6):897-902. PubMed ID: 32240498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation in paediatric urology and surgery, part 2: An overview of simulation modalities and their applications.
    Nataraja RM; Webb N; Lopez PJ
    J Pediatr Urol; 2018 Apr; 14(2):125-131. PubMed ID: 29456118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of simulation in urological training - A quantitative study of practice and opinions.
    Aydin A; Ahmed K; Shafi AM; Khan MS; Dasgupta P
    Surgeon; 2016 Dec; 14(6):301-307. PubMed ID: 26148761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current status of urology surgical training in Europe: an ESRU-ESU-ESUT collaborative study.
    Carrion DM; Rodriguez-Socarrás ME; Mantica G; Esperto F; Cebulla A; Duijvesz D; Patruno G; Vásquez JL; Veneziano D; Díez-Sebastian J; Gozen AS; Palou J; Gómez Rivas J
    World J Urol; 2020 Jan; 38(1):239-246. PubMed ID: 30982099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Call for Change. Can 3D Printing Replace Cadavers for Surgical Training?
    Ghazi A
    Urol Clin North Am; 2022 Feb; 49(1):39-56. PubMed ID: 34776053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robotic simulation training for urological trainees: a comprehensive review on cost, merits and challenges.
    MacCraith E; Forde JC; Davis NF
    J Robot Surg; 2019 Jun; 13(3):371-377. PubMed ID: 30796671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying content for simulation-based curricula in urology: a national needs assessment.
    Nayahangan LJ; Bølling Hansen R; Gilboe Lindorff-Larsen K; Paltved C; Nielsen BU; Konge L
    Scand J Urol; 2017 Dec; 51(6):484-490. PubMed ID: 28743217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Training in urological robotic surgery. Future perspectives.
    El Sherbiny A; Eissa A; Ghaith A; Morini E; Marzotta L; Sighinolfi MC; Micali S; Bianchi G; Rocco B
    Arch Esp Urol; 2018 Jan; 71(1):97-107. PubMed ID: 29336338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Urology technical and non-technical skills development: the emerging role of simulation.
    Rashid P; Gianduzzo TR
    BJU Int; 2016 Apr; 117 Suppl 4():9-16. PubMed ID: 26695716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applications of three-dimensional printing technology in urological practice.
    Youssef RF; Spradling K; Yoon R; Dolan B; Chamberlin J; Okhunov Z; Clayman R; Landman J
    BJU Int; 2015 Nov; 116(5):697-702. PubMed ID: 26010346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.