These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 31677156)
1. Isolation of time-dependent DNA damage induced by energetic carbon ions and their fragments using fluorescent nuclear track detectors. McFadden CH; Rahmanian S; Flint DB; Bright SJ; Yoon DS; O'Brien DJ; Asaithamby A; Abdollahi A; Greilich S; Sawakuchi GO Med Phys; 2020 Jan; 47(1):272-281. PubMed ID: 31677156 [TBL] [Abstract][Full Text] [Related]
2. Sensitivity correction of fluorescent nuclear track detectors using alpha particles: Determining LET spectra of light ions with enhanced accuracy. Muñoz ID; Burigo LN; Gehrke T; Brons S; Greilich S; Jäkel O Med Phys; 2023 Apr; 50(4):2385-2401. PubMed ID: 36345603 [TBL] [Abstract][Full Text] [Related]
3. Time-Lapse Monitoring of DNA Damage Colocalized With Particle Tracks in Single Living Cells. McFadden CH; Hallacy TM; Flint DB; Granville DA; Asaithamby A; Sahoo N; Akselrod MS; Sawakuchi GO Int J Radiat Oncol Biol Phys; 2016 Sep; 96(1):221-7. PubMed ID: 27511858 [TBL] [Abstract][Full Text] [Related]
4. Ion track reconstruction in 3D using alumina-based fluorescent nuclear track detectors. Niklas M; Bartz JA; Akselrod MS; Abollahi A; Jäkel O; Greilich S Phys Med Biol; 2013 Sep; 58(18):N251-66. PubMed ID: 23965401 [TBL] [Abstract][Full Text] [Related]
5. Nanoscale measurements of proton tracks using fluorescent nuclear track detectors. Sawakuchi GO; Ferreira FA; McFadden CH; Hallacy TM; Granville DA; Sahoo N; Akselrod MS Med Phys; 2016 May; 43(5):2485. PubMed ID: 27147359 [TBL] [Abstract][Full Text] [Related]
6. Co-visualization of DNA damage and ion traversals in live mammalian cells using a fluorescent nuclear track detector. Kodaira S; Konishi T; Kobayashi A; Maeda T; Ahmad TA; Yang G; Akselrod MS; Furusawa Y; Uchihori Y J Radiat Res; 2015 Mar; 56(2):360-5. PubMed ID: 25324538 [TBL] [Abstract][Full Text] [Related]
7. Carbon ion dosimetry on a fluorescent nuclear track detector using widefield microscopy. Walsh DWM; Liew H; Schlegel J; Mairani A; Abdollahi A; Niklas M Phys Med Biol; 2020 Nov; 65(21):21NT02. PubMed ID: 32916672 [TBL] [Abstract][Full Text] [Related]
8. Biological characterization of low-energy ions with high-energy deposition on human cells. Saha J; Wilson P; Thieberger P; Lowenstein D; Wang M; Cucinotta FA Radiat Res; 2014 Sep; 182(3):282-91. PubMed ID: 25098728 [TBL] [Abstract][Full Text] [Related]
10. STED microscopy visualizes energy deposition of single ions in a solid-state detector beyond diffraction limit. Niklas M; Henrich M; Jäkel O; Engelhardt J; Abdollahi A; Greilich S Phys Med Biol; 2017 May; 62(9):N180-N190. PubMed ID: 28379846 [TBL] [Abstract][Full Text] [Related]
11. The contribution of high-LET track to DNA damage formation and cell death for Monoenergy and SOBP carbon ion irradiation. Chailapakul P; Maloney O; Hirakawa H; Fujimori A; Kitamura H; Kato TA Biochem Biophys Res Commun; 2024 Feb; 696():149500. PubMed ID: 38219488 [TBL] [Abstract][Full Text] [Related]
12. Direct evidence for the spatial correlation between individual particle traversals and localized CDKN1A (p21) response induced by high-LET radiation. Scholz M; Jakob B; Taucher-Scholz G Radiat Res; 2001 Nov; 156(5 Pt 1):558-63. PubMed ID: 11604069 [TBL] [Abstract][Full Text] [Related]
13. Microdosimetry of proton and carbon ions. Liamsuwan T; Hultqvist M; Lindborg L; Uehara S; Nikjoo H Med Phys; 2014 Aug; 41(8):081721. PubMed ID: 25086531 [TBL] [Abstract][Full Text] [Related]
14. Registration procedure for spatial correlation of physical energy deposition of particle irradiation and cellular response utilizing cell-fluorescent ion track hybrid detectors. Niklas M; Zimmermann F; Schlegel J; Schwager C; Debus J; Jäkel O; Abdollahi A; Greilich S Phys Med Biol; 2016 Sep; 61(17):N441-60. PubMed ID: 27499388 [TBL] [Abstract][Full Text] [Related]
15. Subcellular spatial correlation of particle traversal and biological response in clinical ion beams. Niklas M; Abdollahi A; Akselrod MS; Debus J; Jäkel O; Greilich S Int J Radiat Oncol Biol Phys; 2013 Dec; 87(5):1141-7. PubMed ID: 24113054 [TBL] [Abstract][Full Text] [Related]
17. Particles with similar LET values generate DNA breaks of different complexity and reparability: a high-resolution microscopy analysis of γH2AX/53BP1 foci. Jezkova L; Zadneprianetc M; Kulikova E; Smirnova E; Bulanova T; Depes D; Falkova I; Boreyko A; Krasavin E; Davidkova M; Kozubek S; Valentova O; Falk M Nanoscale; 2018 Jan; 10(3):1162-1179. PubMed ID: 29271466 [TBL] [Abstract][Full Text] [Related]
18. Contribution to dose in healthy tissue from secondary target fragments in therapeutic proton, He and C beams measured with CR-39 plastic nuclear track detectors. Kodaira S; Kitamura H; Kurano M; Kawashima H; Benton ER Sci Rep; 2019 Mar; 9(1):3708. PubMed ID: 30842438 [TBL] [Abstract][Full Text] [Related]
19. Role of isolated and clustered DNA damage and the post-irradiating repair process in the effects of heavy ion beam irradiation. Tokuyama Y; Furusawa Y; Ide H; Yasui A; Terato H J Radiat Res; 2015 May; 56(3):446-55. PubMed ID: 25717060 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of Additional Track Parameters from Fluorescent Nuclear Track Detectors to Determine the LET of Individual Ions. Greilich S; Jansen J; Neuholz A; Stadler A; Mescher H; Klimpki G Radiat Prot Dosimetry; 2018 Aug; 180(1-4):206-209. PubMed ID: 29088413 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]