These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 31677199)

  • 41. Retinohypothalamic tract synapses in the rat suprachiasmatic nucleus demonstrate short-term synaptic plasticity.
    Moldavan MG; Allen CN
    J Neurophysiol; 2010 May; 103(5):2390-9. PubMed ID: 20220078
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Suprachiasmatic vasopressin and the circadian regulation of voluntary locomotor behavior.
    Cormier HC; Della-Maggiore V; Karatsoreos IN; Koletar MM; Ralph MR
    Eur J Neurosci; 2015 Jan; 41(1):79-88. PubMed ID: 24893679
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Estrogen-receptive neurons in the anteroventral periventricular nucleus are synaptic targets of the suprachiasmatic nucleus and peri-suprachiasmatic region.
    Watson RE; Langub MC; Engle MG; Maley BE
    Brain Res; 1995 Aug; 689(2):254-64. PubMed ID: 7583329
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Circadian thermosensitive characteristics of suprachiasmatic neurons in vitro.
    Derambure PS; Boulant JA
    Am J Physiol; 1994 Jun; 266(6 Pt 2):R1876-84. PubMed ID: 8024042
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Anterograde neuronal tracing of retinohypothalamic projections in the hamster--possible innervation of substance P-containing neurons in the suprachiasmatic nucleus.
    Reuss S; Decker K; Hödl P; Sraka S
    Neurosci Lett; 1994 Jun; 174(1):51-4. PubMed ID: 7526280
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Gating of retinal inputs through the suprachiasmatic nucleus: role of excitatory neurotransmission.
    Mikkelsen JD; Larsen PJ; Mick G; Vrang N; Ebling FJ; Maywood ES; Hastings MH; Møller M
    Neurochem Int; 1995 Sep; 27(3):263-72. PubMed ID: 8520465
    [TBL] [Abstract][Full Text] [Related]  

  • 47. SCN outputs and the hypothalamic balance of life.
    Kalsbeek A; Palm IF; La Fleur SE; Scheer FA; Perreau-Lenz S; Ruiter M; Kreier F; Cailotto C; Buijs RM
    J Biol Rhythms; 2006 Dec; 21(6):458-69. PubMed ID: 17107936
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Vasopressin and the output of the hypothalamic biological clock.
    Kalsbeek A; Fliers E; Hofman MA; Swaab DF; Buijs RM
    J Neuroendocrinol; 2010 May; 22(5):362-72. PubMed ID: 20088910
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The effects of [Arg8]vasopressin and [Arg8]vasotocin on the firing rate of suprachiasmatic neurons in vitro.
    Mihai R; Coculescu M; Wakerley JB; Ingram CD
    Neuroscience; 1994 Oct; 62(3):783-92. PubMed ID: 7870306
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Heterogeneous expression of gamma-aminobutyric acid and gamma-aminobutyric acid-associated receptors and transporters in the rat suprachiasmatic nucleus.
    Belenky MA; Yarom Y; Pickard GE
    J Comp Neurol; 2008 Feb; 506(4):708-32. PubMed ID: 18067149
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The light-activated signaling pathway in SCN-projecting rat retinal ganglion cells.
    Warren EJ; Allen CN; Brown RL; Robinson DW
    Eur J Neurosci; 2006 May; 23(9):2477-87. PubMed ID: 16706854
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Blue Light Promotes Neurite Outgrowth of Retinal Explants in Postnatal ChR2 Mice.
    Lin CI; Chiao CC
    eNeuro; 2019; 6(4):. PubMed ID: 31362954
    [TBL] [Abstract][Full Text] [Related]  

  • 53. 5HT1B receptor agonists inhibit light-induced phase shifts of behavioral circadian rhythms and expression of the immediate-early gene c-fos in the suprachiasmatic nucleus.
    Pickard GE; Weber ET; Scott PA; Riberdy AF; Rea MA
    J Neurosci; 1996 Dec; 16(24):8208-20. PubMed ID: 8987845
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Defined cell groups in the rat suprachiasmatic nucleus have different day/night rhythms of single-unit activity in vivo.
    Saeb-Parsy K; Dyball RE
    J Biol Rhythms; 2003 Feb; 18(1):26-42. PubMed ID: 12568242
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The retinohypothalamic tract originates from a distinct subset of retinal ganglion cells.
    Moore RY; Speh JC; Card JP
    J Comp Neurol; 1995 Feb; 352(3):351-66. PubMed ID: 7706557
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Geniculohypothalamic GABAergic projections gate suprachiasmatic nucleus responses to retinal input.
    Hanna L; Walmsley L; Pienaar A; Howarth M; Brown TM
    J Physiol; 2017 Jun; 595(11):3621-3649. PubMed ID: 28217893
    [TBL] [Abstract][Full Text] [Related]  

  • 57. rAAV-mediated subcellular targeting of optogenetic tools in retinal ganglion cells in vivo.
    Wu C; Ivanova E; Zhang Y; Pan ZH
    PLoS One; 2013; 8(6):e66332. PubMed ID: 23799092
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Target areas innervated by PACAP-immunoreactive retinal ganglion cells.
    Hannibal J; Fahrenkrug J
    Cell Tissue Res; 2004 Apr; 316(1):99-113. PubMed ID: 14991397
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Optogenetic recruitment of spinal reflex pathways from large-diameter primary afferents in non-transgenic rats transduced with AAV9/Channelrhodopsin 2.
    Kubota S; Sidikejiang W; Kudo M; Inoue KI; Umeda T; Takada M; Seki K
    J Physiol; 2019 Oct; 597(19):5025-5040. PubMed ID: 31397900
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A broad role for melanopsin in nonvisual photoreception.
    Gooley JJ; Lu J; Fischer D; Saper CB
    J Neurosci; 2003 Aug; 23(18):7093-106. PubMed ID: 12904470
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.