These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 31677438)

  • 1. Exploring uncertainty measures in deep networks for Multiple sclerosis lesion detection and segmentation.
    Nair T; Precup D; Arnold DL; Arbel T
    Med Image Anal; 2020 Jan; 59():101557. PubMed ID: 31677438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuro-fuzzy patch-wise R-CNN for multiple sclerosis segmentation.
    Essa E; Aldesouky D; Hussein SE; Rashad MZ
    Med Biol Eng Comput; 2020 Sep; 58(9):2161-2175. PubMed ID: 32681214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bayesian QuickNAT: Model uncertainty in deep whole-brain segmentation for structure-wise quality control.
    Roy AG; Conjeti S; Navab N; Wachinger C;
    Neuroimage; 2019 Jul; 195():11-22. PubMed ID: 30926511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Are multi-contrast magnetic resonance images necessary for segmenting multiple sclerosis brains? A large cohort study based on deep learning.
    Narayana PA; Coronado I; Sujit SJ; Sun X; Wolinsky JS; Gabr RE
    Magn Reson Imaging; 2020 Jan; 65():8-14. PubMed ID: 31670238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach.
    Valverde S; Cabezas M; Roura E; González-Villà S; Pareto D; Vilanova JC; Ramió-Torrentà L; Rovira À; Oliver A; Lladó X
    Neuroimage; 2017 Jul; 155():159-168. PubMed ID: 28435096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LST-AI: A deep learning ensemble for accurate MS lesion segmentation.
    Wiltgen T; McGinnis J; Schlaeger S; Kofler F; Voon C; Berthele A; Bischl D; Grundl L; Will N; Metz M; Schinz D; Sepp D; Prucker P; Schmitz-Koep B; Zimmer C; Menze B; Rueckert D; Hemmer B; Kirschke J; Mühlau M; Wiestler B
    Neuroimage Clin; 2024; 42():103611. PubMed ID: 38703470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ALL-Net: Anatomical information lesion-wise loss function integrated into neural network for multiple sclerosis lesion segmentation.
    Zhang H; Zhang J; Li C; Sweeney EM; Spincemaille P; Nguyen TD; Gauthier SA; Wang Y; Marcille M
    Neuroimage Clin; 2021; 32():102854. PubMed ID: 34666289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leveraging voxel-wise segmentation uncertainty to improve reliability in assessment of paediatric dysplasia of the hip.
    Kannan A; Hodgson A; Mulpuri K; Garbi R
    Int J Comput Assist Radiol Surg; 2021 Jul; 16(7):1121-1129. PubMed ID: 33966168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D multi-scale FCN with random modality voxel dropout learning for Intervertebral Disc Localization and Segmentation from Multi-modality MR Images.
    Li X; Dou Q; Chen H; Fu CW; Qi X; Belavý DL; Armbrecht G; Felsenberg D; Zheng G; Heng PA
    Med Image Anal; 2018 Apr; 45():41-54. PubMed ID: 29414435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep 3D Convolutional Encoder Networks With Shortcuts for Multiscale Feature Integration Applied to Multiple Sclerosis Lesion Segmentation.
    Brosch T; Tang LY; Youngjin Yoo ; Li DK; Traboulsee A; Tam R
    IEEE Trans Med Imaging; 2016 May; 35(5):1229-1239. PubMed ID: 26886978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Propagating Uncertainty Across Cascaded Medical Imaging Tasks for Improved Deep Learning Inference.
    Mehta R; Christinck T; Nair T; Bussy A; Premasiri S; Costantino M; Chakravarthy MM; Arnold DL; Gal Y; Arbel T
    IEEE Trans Med Imaging; 2022 Feb; 41(2):360-373. PubMed ID: 34543193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fully automated longitudinal segmentation of new or enlarged multiple sclerosis lesions using 3D convolutional neural networks.
    Krüger J; Opfer R; Gessert N; Ostwaldt AC; Manogaran P; Kitzler HH; Schlaefer A; Schippling S
    Neuroimage Clin; 2020; 28():102445. PubMed ID: 33038667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A fully convolutional neural network for new T2-w lesion detection in multiple sclerosis.
    Salem M; Valverde S; Cabezas M; Pareto D; Oliver A; Salvi J; Rovira À; Lladó X
    Neuroimage Clin; 2020; 25():102149. PubMed ID: 31918065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic detection of lesion load change in Multiple Sclerosis using convolutional neural networks with segmentation confidence.
    McKinley R; Wepfer R; Grunder L; Aschwanden F; Fischer T; Friedli C; Muri R; Rummel C; Verma R; Weisstanner C; Wiestler B; Berger C; Eichinger P; Muhlau M; Reyes M; Salmen A; Chan A; Wiest R; Wagner F
    Neuroimage Clin; 2020; 25():102104. PubMed ID: 31927500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-shot domain adaptation in multiple sclerosis lesion segmentation using convolutional neural networks.
    Valverde S; Salem M; Cabezas M; Pareto D; Vilanova JC; Ramió-Torrentà L; Rovira À; Salvi J; Oliver A; Lladó X
    Neuroimage Clin; 2019; 21():101638. PubMed ID: 30555005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-branch convolutional neural network for multiple sclerosis lesion segmentation.
    Aslani S; Dayan M; Storelli L; Filippi M; Murino V; Rocca MA; Sona D
    Neuroimage; 2019 Aug; 196():1-15. PubMed ID: 30953833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Infratentorial lesions in multiple sclerosis patients: intra- and inter-rater variability in comparison to a fully automated segmentation using 3D convolutional neural networks.
    Krüger J; Ostwaldt AC; Spies L; Geisler B; Schlaefer A; Kitzler HH; Schippling S; Opfer R
    Eur Radiol; 2022 Apr; 32(4):2798-2809. PubMed ID: 34643779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uncertainty and interpretability in convolutional neural networks for semantic segmentation of colorectal polyps.
    Wickstrøm K; Kampffmeyer M; Jenssen R
    Med Image Anal; 2020 Feb; 60():101619. PubMed ID: 31810005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nuclei instance segmentation from histopathology images using Bayesian dropout based deep learning.
    Gudhe NR; Kosma VM; Behravan H; Mannermaa A
    BMC Med Imaging; 2023 Oct; 23(1):162. PubMed ID: 37858043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain structure segmentation in the presence of multiple sclerosis lesions.
    González-Villà S; Oliver A; Huo Y; Lladó X; Landman BA
    Neuroimage Clin; 2019; 22():101709. PubMed ID: 30822719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.