These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 31677473)
1. High-efficiency removal capacities and quantitative sorption mechanisms of Pb by oxidized rape straw biochars. Gao R; Xiang L; Hu H; Fu Q; Zhu J; Liu Y; Huang G Sci Total Environ; 2020 Jan; 699():134262. PubMed ID: 31677473 [TBL] [Abstract][Full Text] [Related]
2. Highly-effective removal of Pb by co-pyrolysis biochar derived from rape straw and orthophosphate. Gao R; Fu Q; Hu H; Wang Q; Liu Y; Zhu J J Hazard Mater; 2019 Jun; 371():191-197. PubMed ID: 30851672 [TBL] [Abstract][Full Text] [Related]
3. Pyrolytic temperatures impact lead sorption mechanisms by bagasse biochars. Ding W; Dong X; Ime IM; Gao B; Ma LQ Chemosphere; 2014 Jun; 105():68-74. PubMed ID: 24393563 [TBL] [Abstract][Full Text] [Related]
4. Geochemical and spectroscopic investigations of Cd and Pb sorption mechanisms on contrasting biochars: engineering implications. Trakal L; Bingöl D; Pohořelý M; Hruška M; Komárek M Bioresour Technol; 2014 Nov; 171():442-51. PubMed ID: 25226061 [TBL] [Abstract][Full Text] [Related]
5. Removal of Pb(II), Cu(II), and Cd(II) from aqueous solutions by biochar derived from KMnO4 treated hickory wood. Wang H; Gao B; Wang S; Fang J; Xue Y; Yang K Bioresour Technol; 2015 Dec; 197():356-62. PubMed ID: 26344243 [TBL] [Abstract][Full Text] [Related]
6. Sorption and cosorption of lead and sulfapyridine on carbon nanotube-modified biochars. Inyang M; Gao B; Zimmerman A; Zhou Y; Cao X Environ Sci Pollut Res Int; 2015 Feb; 22(3):1868-76. PubMed ID: 25212810 [TBL] [Abstract][Full Text] [Related]
7. Effect of Fe-functionalized biochar on toxicity of a technosol contaminated by Pb and As: sorption and phytotoxicity tests. Lebrun M; Miard F; Renouard S; Nandillon R; Scippa GS; Morabito D; Bourgerie S Environ Sci Pollut Res Int; 2018 Nov; 25(33):33678-33690. PubMed ID: 30276689 [TBL] [Abstract][Full Text] [Related]
8. Biochars derived from various crop straws: characterization and Cd(II) removal potential. Sun J; Lian F; Liu Z; Zhu L; Song Z Ecotoxicol Environ Saf; 2014 Aug; 106():226-31. PubMed ID: 24859708 [TBL] [Abstract][Full Text] [Related]
9. Effect of coexisting Al(III) ions on Pb(II) sorption on biochars: Role of pH buffer and competition. Yang Y; Zhang W; Qiu H; Tsang DCW; Morel JL; Qiu R Chemosphere; 2016 Oct; 161():438-445. PubMed ID: 27454898 [TBL] [Abstract][Full Text] [Related]
10. Potential mechanisms of cadmium removal from aqueous solution by Canna indica derived biochar. Cui X; Fang S; Yao Y; Li T; Ni Q; Yang X; He Z Sci Total Environ; 2016 Aug; 562():517-525. PubMed ID: 27107650 [TBL] [Abstract][Full Text] [Related]
11. A facile foaming-polymerization strategy to prepare 3D MnO Wu Z; Chen X; Yuan B; Fu ML Chemosphere; 2020 Jan; 239():124745. PubMed ID: 31521939 [TBL] [Abstract][Full Text] [Related]
12. Physicochemical and sorptive properties of biochars derived from woody and herbaceous biomass. Wang S; Gao B; Zimmerman AR; Li Y; Ma L; Harris WG; Migliaccio KW Chemosphere; 2015 Sep; 134():257-62. PubMed ID: 25957037 [TBL] [Abstract][Full Text] [Related]
13. Effect of three artificial aging techniques on physicochemical properties and Pb adsorption capacities of different biochars. Tan L; Ma Z; Yang K; Cui Q; Wang K; Wang T; Wu GL; Zheng J Sci Total Environ; 2020 Jan; 699():134223. PubMed ID: 31522055 [TBL] [Abstract][Full Text] [Related]
14. Characterization and Pb(II) removal potential of corn straw- and municipal sludge-derived biochars. Wang S; Guo W; Gao F; Yang R R Soc Open Sci; 2017 Sep; 4(9):170402. PubMed ID: 28989751 [TBL] [Abstract][Full Text] [Related]
15. Clanis bilineata larvae skin-derived biochars for immobilization of lead: Sorption isotherm and molecular mechanism. Yan Y; Zhang L; Wang Y; Wang X; Wang S; Li Q; Liu X; Xu Y; Yang J; Bolan N Sci Total Environ; 2020 Feb; 704():135251. PubMed ID: 31812421 [TBL] [Abstract][Full Text] [Related]
16. Sorption of lead ions onto oxidized bagasse-biochar mitigates Pb-induced oxidative stress on hydroponically grown chicory: Experimental observations and mechanisms. El-Banna MF; Mosa A; Gao B; Yin X; Ahmad Z; Wang H Chemosphere; 2018 Oct; 208():887-898. PubMed ID: 30068032 [TBL] [Abstract][Full Text] [Related]
17. Ball-milled biochar for galaxolide removal: Sorption performance and governing mechanisms. Zhang Q; Wang J; Lyu H; Zhao Q; Jiang L; Liu L Sci Total Environ; 2019 Apr; 659():1537-1545. PubMed ID: 31096363 [TBL] [Abstract][Full Text] [Related]
18. Nitrate sorption to biochar following chemical oxidation. Sanford JR; Larson RA; Runge T Sci Total Environ; 2019 Jun; 669():938-947. PubMed ID: 30970460 [TBL] [Abstract][Full Text] [Related]
19. Phosphorus sorption capacity of biochars varies with biochar type and salinity level. Dugdug AA; Chang SX; Ok YS; Rajapaksha AU; Anyia A Environ Sci Pollut Res Int; 2018 Sep; 25(26):25799-25812. PubMed ID: 29429110 [TBL] [Abstract][Full Text] [Related]
20. Comparative sorption isotherms and removal studies for Pb(II) by physical and thermochemical modification of low-cost agro-wastes from Tanzania. Rwiza MJ; Oh SY; Kim KW; Kim SD Chemosphere; 2018 Mar; 195():135-145. PubMed ID: 29268172 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]