These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 31677847)

  • 1. Comparison of models to evaluate microbial sulphide generation and transport in the near field of a SF/HLW repository in Opalinus Clay.
    Pekala M; Smith P; Wersin P; Diomidis N; Cloet V
    J Contam Hydrol; 2020 Jan; 228():103561. PubMed ID: 31677847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term non-isothermal reactive transport model of compacted bentonite, concrete and corrosion products in a HLW repository in clay.
    Mon A; Samper J; Montenegro L; Naves A; Fernández J
    J Contam Hydrol; 2017 Feb; 197():1-16. PubMed ID: 28069315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clay-associated microbial communities and their relevance for a nuclear waste repository in the Opalinus Clay rock formation.
    Mitzscherling J; Genderjahn S; Schleicher AM; Bartholomäus A; Kallmeyer J; Wagner D
    Microbiologyopen; 2023 Aug; 12(4):e1370. PubMed ID: 37642485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of copper corrosion in compacted bentonite clay as a function of clay density and growth conditions for sulfate-reducing bacteria.
    Pedersen K
    J Appl Microbiol; 2010 Mar; 108(3):1094-1104. PubMed ID: 20015208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of coupled transport phenomena in the Opalinus Clay and implications for radionuclide transport.
    Soler JM
    J Contam Hydrol; 2001 Dec; 53(1-2):63-84. PubMed ID: 11816995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of compacted bentonite microbial community on the clay mineralogy and copper canister corrosion: a multidisciplinary approach in view of a safe Deep Geological Repository of nuclear wastes.
    Martinez-Moreno MF; Povedano-Priego C; Morales-Hidalgo M; Mumford AD; Ojeda JJ; Jroundi F; Merroun ML
    J Hazard Mater; 2023 Sep; 458():131940. PubMed ID: 37390682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mixing and sulphate-reducing activity of bacteria in swelling, compacted bentonite clay under high-level radioactive waste repository conditions.
    Pedersen K; Motamedi M; Karnland O; Sandén T
    J Appl Microbiol; 2000 Dec; 89(6):1038-47. PubMed ID: 11123477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Survival and activity of an indigenous iron-reducing microbial community from MX80 bentonite in high temperature / low water environments with relevance to a proposed method of nuclear waste disposal.
    Gilmour KA; Davie CT; Gray N
    Sci Total Environ; 2022 Mar; 814():152660. PubMed ID: 34958843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geochemical evaluation of different groundwater-host rock systems for radioactive waste disposal.
    Metz V; Kienzler B; Schüssler W
    J Contam Hydrol; 2003 Mar; 61(1-4):265-79. PubMed ID: 12598109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Year-Long Development of Microorganisms in Uncompacted Bavarian Bentonite Slurries at 30 and 60 °C.
    Matschiavelli N; Kluge S; Podlech C; Standhaft D; Grathoff G; Ikeda-Ohno A; Warr LN; Chukharkina A; Arnold T; Cherkouk A
    Environ Sci Technol; 2019 Sep; 53(17):10514-10524. PubMed ID: 31369249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-dimensional transport modelling of corrosive agents through a bentonite buffer in a Canadian deep geological repository.
    Briggs S; McKelvie J; Sleep B; Krol M
    Sci Total Environ; 2017 Dec; 599-600():348-354. PubMed ID: 28478364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth and Persistence of an Aerobic Microbial Community in Wyoming Bentonite MX-80 Despite Anoxic
    Burzan N; Murad Lima R; Frutschi M; Janowczyk A; Reddy B; Rance A; Diomidis N; Bernier-Latmani R
    Front Microbiol; 2022; 13():858324. PubMed ID: 35547138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial responses to elevated temperature: Evaluating bentonite mineralogy and copper canister corrosion within the long-term stability of deep geological repositories of nuclear waste.
    Martinez-Moreno MF; Povedano-Priego C; Mumford AD; Morales-Hidalgo M; Mijnendonckx K; Jroundi F; Ojeda JJ; Merroun ML
    Sci Total Environ; 2024 Mar; 915():170149. PubMed ID: 38242445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A minimalistic microbial food web in an excavated deep subsurface clay rock.
    Bagnoud A; de Bruijn I; Andersson AF; Diomidis N; Leupin OX; Schwyn B; Bernier-Latmani R
    FEMS Microbiol Ecol; 2016 Jan; 92(1):. PubMed ID: 26542073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Total system performance assessment for waste disposal using a logic tree approach.
    Kessler JH; McGuire RK
    Risk Anal; 1999 Oct; 19(5):915-31. PubMed ID: 10765439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling geochemical and microbial consumption of dissolved oxygen after backfilling a high level radiactive waste repository.
    Yang C; Samper J; Molinero J; Bonilla M
    J Contam Hydrol; 2007 Aug; 93(1-4):130-48. PubMed ID: 17328991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of the electron donor on in situ microbial nitrate reduction in Opalinus Clay: results from the Mont Terri rock laboratory (Switzerland).
    Bleyen N; Smets S; Small J; Moors H; Leys N; Albrecht A; De Cannière P; Schwyn B; Wittebroodt C; Valcke E
    Swiss J Geosci; 2017; 110(1):355-374. PubMed ID: 32214982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-term geochemical evolution of the near field repository: insights from reactive transport modelling and experimental evidences.
    Arcos D; Grandia F; Domènech C; Fernández AM; Villar MV; Muurinen A; Carlsson T; Sellin P; Hernán P
    J Contam Hydrol; 2008 Dec; 102(3-4):196-209. PubMed ID: 18992963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial hydrogen sinks in the sand-bentonite backfill material for the deep geological disposal of radioactive waste.
    Rolland C; Burzan N; Leupin OX; Boylan AA; Frutschi M; Wang S; Jacquemin N; Bernier-Latmani R
    Front Microbiol; 2024; 15():1359677. PubMed ID: 38690357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of microbial activity on the radioactive waste disposal: long term prediction of biocorrosion processes.
    Libert M; Schütz MK; Esnault L; Féron D; Bildstein O
    Bioelectrochemistry; 2014 Jun; 97():162-8. PubMed ID: 24177136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.