These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 31677913)

  • 21. Fipronil and imidacloprid reduce honeybee mitochondrial activity.
    Nicodemo D; Maioli MA; Medeiros HC; Guelfi M; Balieira KV; De Jong D; Mingatto FE
    Environ Toxicol Chem; 2014 Sep; 33(9):2070-5. PubMed ID: 25131894
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adsorption, transport and degradation of fipronil termiticide in three Hawaii soils.
    Shuai X; Chen J; Ray C
    Pest Manag Sci; 2012 May; 68(5):731-9. PubMed ID: 22045597
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Insecticide Susceptibility in Asian Honey Bees (Apis cerana (Hymenoptera: Apidae)) and Implications for Wild Honey Bees in Asia.
    Yasuda M; Sakamoto Y; Goka K; Nagamitsu T; Taki H
    J Econ Entomol; 2017 Apr; 110(2):447-452. PubMed ID: 28334064
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Field-relevant doses of the systemic insecticide fipronil and fungicide pyraclostrobin impair mandibular and hypopharyngeal glands in nurse honeybees (Apis mellifera).
    Zaluski R; Justulin LA; Orsi RO
    Sci Rep; 2017 Nov; 7(1):15217. PubMed ID: 29123242
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cellular responses in the Malpighian tubules of Scaptotrigona postica (Latreille, 1807) exposed to low doses of fipronil and boric acid.
    Ferreira RA; Silva Zacarin EC; Malaspina O; Bueno OC; Tomotake ME; Pereira AM
    Micron; 2013 Mar; 46():57-65. PubMed ID: 23352545
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Morphological alterations induced by boric acid and fipronil in the midgut of worker honeybee (Apis mellifera L.) larvae : Morphological alterations in the midgut of A. mellifera.
    da Silva Cruz A; da Silva-Zacarin EC; Bueno OC; Malaspina O
    Cell Biol Toxicol; 2010 Apr; 26(2):165-76. PubMed ID: 19444624
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Acute lethal effect of the commercial formulation of the insecticides Imidacloprid, Spinosad y Thiocyclam hidrogenoxalate in Bombus atratus (Hymenoptera: Apidae) workers].
    Riaño Jiménez D; Cure JR
    Rev Biol Trop; 2016 Dec; 64(4):1737-45. PubMed ID: 29465949
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differential physiological effects of neonicotinoid insecticides on honey bees: A comparison between Apis mellifera and Apis cerana.
    Li Z; Li M; He J; Zhao X; Chaimanee V; Huang WF; Nie H; Zhao Y; Su S
    Pestic Biochem Physiol; 2017 Aug; 140():1-8. PubMed ID: 28755688
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sorption and desorption of fipronil in midwestern soils.
    Spomer NA; Kamble ST
    Bull Environ Contam Toxicol; 2010 Feb; 84(2):264-8. PubMed ID: 19943032
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Persistence and movement of fipronil termiticide with under-slab and trenching treatments.
    Ying GG; Kookana RS
    Environ Toxicol Chem; 2006 Aug; 25(8):2045-50. PubMed ID: 16916023
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sorption-desorption of fipronil in some soils, as influenced by ionic strength, pH and temperature.
    Singh A; Srivastava A; Srivastava PC
    Pest Manag Sci; 2016 Aug; 72(8):1491-9. PubMed ID: 26462999
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dissipation of fipronil granule formulation in sugarcane field soil.
    Mandal K; Singh B
    Ecotoxicol Environ Saf; 2013 Feb; 88():142-7. PubMed ID: 23195807
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enantioselective bioaccumulation and toxic effects of fipronil in the earthworm Eisenia foetida following soil exposure.
    Qin F; Gao Y; Xu P; Guo B; Li J; Wang H
    Pest Manag Sci; 2015 Apr; 71(4):553-61. PubMed ID: 24899256
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessment of toxicity and potential risk of butene-fipronil using Drosophila melanogaster, in comparison to nine conventional insecticides.
    Arain MS; Hu XX; Li GQ
    Bull Environ Contam Toxicol; 2014 Feb; 92(2):190-5. PubMed ID: 24233193
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Acute enantioselective toxicity of fipronil and its desulfinyl photoproduct to Ceriodaphnia dubia.
    Konwick BJ; Fisk AT; Garrison AW; Avants JK; Black MC
    Environ Toxicol Chem; 2005 Sep; 24(9):2350-5. PubMed ID: 16193765
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fipronil-induced enantioselective developmental toxicity to zebrafish embryo-larvae involves changes in DNA methylation.
    Qian Y; Wang C; Wang J; Zhang X; Zhou Z; Zhao M; Lu C
    Sci Rep; 2017 May; 7(1):2284. PubMed ID: 28536466
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The linker length of glucose-fipronil conjugates has a major effect on the rate of bioactivation by β-glucosidase.
    Wen Y; Jiang X; Yang C; Meng H; Wang B; Wu H; Zhang Z; Xu H
    Pest Manag Sci; 2019 Mar; 75(3):708-717. PubMed ID: 30182531
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Is Apis mellifera more sensitive to insecticides than other insects?
    Hardstone MC; Scott JG
    Pest Manag Sci; 2010 Nov; 66(11):1171-80. PubMed ID: 20672339
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Acute oral and contact toxicity of new ethyl-carbamates on the mortality and acetylcholinesterase activity of honey bee (Apis mellifera).
    Iturbe-Requena SL; Prado-Ochoa MG; Muñoz-Guzmán MA; Carrillo-Miranda L; Velázquez-Sánchez AM; Ángeles E; Alba-Hurtado F
    Chemosphere; 2020 Mar; 242():125293. PubMed ID: 31896202
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanisms for selective toxicity of fipronil insecticide and its sulfone metabolite and desulfinyl photoproduct.
    Hainzl D; Cole LM; Casida JE
    Chem Res Toxicol; 1998 Dec; 11(12):1529-35. PubMed ID: 9860498
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.