These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

443 related articles for article (PubMed ID: 31677970)

  • 1. Intersection of the Gut Microbiome and Circadian Rhythms in Metabolism.
    Frazier K; Chang EB
    Trends Endocrinol Metab; 2020 Jan; 31(1):25-36. PubMed ID: 31677970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gut microbiota: closely tied to the regulation of circadian clock in the development of type 2 diabetes mellitus.
    Ding L; Xiao XH
    Chin Med J (Engl); 2020 Apr; 133(7):817-825. PubMed ID: 32106122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of the microbiota in circadian rhythms of the host.
    Schmalle V; Lorentz A
    Chronobiol Int; 2020 Mar; 37(3):301-310. PubMed ID: 32050806
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bile acid metabolism and circadian rhythms.
    Yang Y; Zhang J
    Am J Physiol Gastrointest Liver Physiol; 2020 Nov; 319(5):G549-G563. PubMed ID: 32902316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gut microbiota: a potential manipulator for host adipose tissue and energy metabolism.
    Bohan R; Tianyu X; Tiantian Z; Ruonan F; Hongtao H; Qiong W; Chao S
    J Nutr Biochem; 2019 Feb; 64():206-217. PubMed ID: 30553096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Circadian Rhythm and the Gut Microbiome.
    Voigt RM; Forsyth CB; Green SJ; Engen PA; Keshavarzian A
    Int Rev Neurobiol; 2016; 131():193-205. PubMed ID: 27793218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The microbiome stabilizes circadian rhythms in the gut.
    Zhang Y; Li Y; Barber AF; Noya SB; Williams JA; Li F; Daniel SG; Bittinger K; Fang J; Sehgal A
    Proc Natl Acad Sci U S A; 2023 Jan; 120(5):e2217532120. PubMed ID: 36689661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding connections and roles of gut microbiome in cardiovascular diseases.
    Rajendiran E; Ramadass B; Ramprasath V
    Can J Microbiol; 2021 Feb; 67(2):101-111. PubMed ID: 33079568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elevated levels of circulating short-chain fatty acids and bile acids in type 2 diabetes are linked to gut barrier disruption and disordered gut microbiota.
    Zhao L; Lou H; Peng Y; Chen S; Fan L; Li X
    Diabetes Res Clin Pract; 2020 Nov; 169():108418. PubMed ID: 32891692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Histone Deacetylase Inhibition by Gut Microbe-Generated Short-Chain Fatty Acids Entrains Intestinal Epithelial Circadian Rhythms.
    Fawad JA; Luzader DH; Hanson GF; Moutinho TJ; McKinney CA; Mitchell PG; Brown-Steinke K; Kumar A; Park M; Lee S; Bolick DT; Medlock GL; Zhao JY; Rosselot AE; Chou CJ; Eshleman EM; Alenghat T; Hong CI; Papin JA; Moore SR
    Gastroenterology; 2022 Nov; 163(5):1377-1390.e11. PubMed ID: 35934064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Research progress on the regulation of mammalian energy metabolism by the circadian clock system and gut microbiota].
    Zhang HS; Li C; Li YT; Jin YP; Liu W; Chen HT
    Sheng Li Xue Bao; 2022 Jun; 74(3):443-460. PubMed ID: 35770642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methionine Restriction Regulates Cognitive Function in High-Fat Diet-Fed Mice: Roles of Diurnal Rhythms of SCFAs Producing- and Inflammation-Related Microbes.
    Wang L; Ren B; Hui Y; Chu C; Zhao Z; Zhang Y; Zhao B; Shi R; Ren J; Dai X; Liu Z; Liu X
    Mol Nutr Food Res; 2020 Sep; 64(17):e2000190. PubMed ID: 32729963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intermittent fasting contributes to aligned circadian rhythms through interactions with the gut microbiome.
    Daas MC; de Roos NM
    Benef Microbes; 2021 Apr; 12(2):147-161. PubMed ID: 33530881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unconjugated Bile Acids Influence Expression of Circadian Genes: A Potential Mechanism for Microbe-Host Crosstalk.
    Govindarajan K; MacSharry J; Casey PG; Shanahan F; Joyce SA; Gahan CG
    PLoS One; 2016; 11(12):e0167319. PubMed ID: 27907092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Relationship between the Gut Microbiome and Metformin as a Key for Treating Type 2 Diabetes Mellitus.
    Lee CB; Chae SU; Jo SJ; Jerng UM; Bae SK
    Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33808194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Secondary Bile Acids and Short Chain Fatty Acids in the Colon: A Focus on Colonic Microbiome, Cell Proliferation, Inflammation, and Cancer.
    Zeng H; Umar S; Rust B; Lazarova D; Bordonaro M
    Int J Mol Sci; 2019 Mar; 20(5):. PubMed ID: 30862015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Duodenal Chemosensing of Short-Chain Fatty Acids: Implications for GI Diseases.
    Iwasaki M; Akiba Y; Kaunitz JD
    Curr Gastroenterol Rep; 2019 Jul; 21(8):35. PubMed ID: 31289927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological Rhythms, Chrono-Nutrition, and Gut Microbiota: Epigenomics Insights for Precision Nutrition and Metabolic Health.
    de Oliveira Melo NC; Cuevas-Sierra A; Souto VF; Martínez JA
    Biomolecules; 2024 May; 14(5):. PubMed ID: 38785965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gut microbiota-derived metabolites as central regulators in metabolic disorders.
    Agus A; Clément K; Sokol H
    Gut; 2021 Jun; 70(6):1174-1182. PubMed ID: 33272977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of metabolism by circadian rhythms: Support from time-restricted eating, intestinal microbiota & omics analysis.
    Xie X; Zhang M; Luo H
    Life Sci; 2024 Aug; 351():122814. PubMed ID: 38857654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.