BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 31678067)

  • 21. Regulation of 5-aminolevulinic acid synthesis in Rhodobacter sphaeroides 2.4.1: the genetic basis of mutant H-5 auxotrophy.
    Zeilstra-Ryalls JH; Kaplan S
    J Bacteriol; 1995 May; 177(10):2760-8. PubMed ID: 7751286
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 5-Aminolevulinic acid production from inexpensive glucose by engineering the C4 pathway in Escherichia coli.
    Ding W; Weng H; Du G; Chen J; Kang Z
    J Ind Microbiol Biotechnol; 2017 Aug; 44(8):1127-1135. PubMed ID: 28382525
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 5-Aminolevulinate production with recombinant Escherichia coli using a rare codon optimizer host strain.
    Fu W; Lin J; Cen P
    Appl Microbiol Biotechnol; 2007 Jun; 75(4):777-82. PubMed ID: 17333171
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Extracellular 5-aminolevulinic acid production by Escherichia coli containing the Rhodopseudomonas palustris KUGB306 hemA gene.
    Choi HP; Lee YM; Yun CW; Sung HC
    J Microbiol Biotechnol; 2008 Jun; 18(6):1136-40. PubMed ID: 18600059
    [TBL] [Abstract][Full Text] [Related]  

  • 25. N-terminal engineering of glutamyl-tRNA reductase with positive charge arginine to increase 5-aminolevulinic acid biosynthesis.
    Zhang J; Weng H; Ding W; Kang Z
    Bioengineered; 2017 Jul; 8(4):424-427. PubMed ID: 27754792
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effective 5-aminolevulinic acid production via T7 RNA polymerase and RuBisCO equipped Escherichia coli W3110.
    Ting WW; Ng IS
    Biotechnol Bioeng; 2023 Feb; 120(2):583-592. PubMed ID: 36302745
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Advances in microbial production of 5-aminolevulinic acid].
    Kang Z; Zhang J; Yang S; Du G; Chen J
    Sheng Wu Gong Cheng Xue Bao; 2013 Sep; 29(9):1214-22. PubMed ID: 24409685
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 5-Aminolevulinic acid synthesis in Escherichia coli requires expression of hemA.
    Chen W; Russell CS; Murooka Y; Cosloy SD
    J Bacteriol; 1994 May; 176(9):2743-6. PubMed ID: 8169226
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 5-aminolevulinic acid biosynthesis in Escherichia coli coexpressing NADP-dependent malic enzyme and 5-aminolevulinate synthase.
    Shin JA; Kwon YD; Kwon OH; Lee HS; Kim P
    J Microbiol Biotechnol; 2007 Sep; 17(9):1579-84. PubMed ID: 18062242
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-level soluble expression of the hemA gene from Rhodobacter capsulatus and comparative study of its enzymatic properties.
    Lou JW; Zhu L; Wu MB; Yang LR; Lin JP; Cen PL
    J Zhejiang Univ Sci B; 2014 May; 15(5):491-9. PubMed ID: 24793767
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Engineering Escherichia coli for efficient coproduction of polyhydroxyalkanoates and 5-aminolevulinic acid.
    Zhang X; Zhang J; Xu J; Zhao Q; Wang Q; Qi Q
    J Ind Microbiol Biotechnol; 2018 Jan; 45(1):43-51. PubMed ID: 29264661
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of the hemA gene product and delta-aminolevulinic acid in regulation of Escherichia coli heme synthesis.
    Verderber E; Lucast LJ; Van Dehy JA; Cozart P; Etter JB; Best EA
    J Bacteriol; 1997 Jul; 179(14):4583-90. PubMed ID: 9226269
    [TBL] [Abstract][Full Text] [Related]  

  • 33. D-glucose enhanced 5-aminolevulinic acid production in recombinant Escherichia coli culture.
    Liu XX; Wang L; Wang YJ; Cai LL
    Appl Biochem Biotechnol; 2010 Mar; 160(3):822-30. PubMed ID: 19381488
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 5-Aminolevulinic acid fermentation using engineered Saccharomyces cerevisiae.
    Hara KY; Saito M; Kato H; Morikawa K; Kikukawa H; Nomura H; Fujimoto T; Hirono-Hara Y; Watanabe S; Kanamaru K; Kondo A
    Microb Cell Fact; 2019 Nov; 18(1):194. PubMed ID: 31699086
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Strain engineering for high-level 5-aminolevulinic acid production in Escherichia coli.
    Miscevic D; Mao JY; Kefale T; Abedi D; Moo-Young M; Perry Chou C
    Biotechnol Bioeng; 2021 Jan; 118(1):30-42. PubMed ID: 32860420
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of inducers on the production of 5-aminolevulinic acid by recombinant Escherichia coli.
    Xiaoxia L; Jianping L; Peilin C
    Prep Biochem Biotechnol; 2006; 36(3):223-33. PubMed ID: 16707333
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Production of uroporphyrinogen III, which is the common precursor of all tetrapyrrole cofactors, from 5-aminolevulinic acid by Escherichia coli expressing thermostable enzymes.
    Hibino A; Petri R; Büchs J; Ohtake H
    Appl Microbiol Biotechnol; 2013 Aug; 97(16):7337-44. PubMed ID: 23604563
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Purification and production of the extracellular 5-aminolevulinate from recombiniant Escherichia coli expressing yeast ALAS].
    He XM; Zhou J; Cheng Y; Fan J
    Sheng Wu Gong Cheng Xue Bao; 2007 May; 23(3):520-4. PubMed ID: 17578005
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Cloning and prokaryotic expression of Rhodoblastus acidophilus 5-aminolevlinate synthase gene].
    Zhang DY; Cheng FX; Cheng JE; Zhang ZH; Liu Y
    Wei Sheng Wu Xue Bao; 2007 Aug; 47(4):639-44. PubMed ID: 17944364
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Soluble expression of single-chain variable fragment (scFv) in Escherichia coli using superfolder green fluorescent protein as fusion partner.
    Liu M; Wang B; Wang F; Yang Z; Gao D; Zhang C; Ma L; Yu X
    Appl Microbiol Biotechnol; 2019 Aug; 103(15):6071-6079. PubMed ID: 31175428
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.