BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 31678162)

  • 1. Pathomechanisms in the neuronal ceroid lipofuscinoses.
    Nelvagal HR; Lange J; Takahashi K; Tarczyluk-Wells MA; Cooper JD
    Biochim Biophys Acta Mol Basis Dis; 2020 Sep; 1866(9):165570. PubMed ID: 31678162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuronal ceroid lipofuscinoses.
    Jalanko A; Braulke T
    Biochim Biophys Acta; 2009 Apr; 1793(4):697-709. PubMed ID: 19084560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Moving towards a new era of genomics in the neuronal ceroid lipofuscinoses.
    Butz ES; Chandrachud U; Mole SE; Cotman SL
    Biochim Biophys Acta Mol Basis Dis; 2020 Sep; 1866(9):165571. PubMed ID: 31678159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lysosomal dysfunction, autophagic defects, and CLN5 accumulation underlie the pathogenesis of KCTD7-mutated neuronal ceroid lipofuscinoses.
    Wang Y; Wang H; Wang C
    Autophagy; 2023 Jun; 19(6):1876-1878. PubMed ID: 36368077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzyme replacement therapy with recombinant pro-CTSD (cathepsin D) corrects defective proteolysis and autophagy in neuronal ceroid lipofuscinosis.
    Marques ARA; Di Spiezio A; Thießen N; Schmidt L; Grötzinger J; Lüllmann-Rauch R; Damme M; Storck SE; Pietrzik CU; Fogh J; Bär J; Mikhaylova M; Glatzel M; Bassal M; Bartsch U; Saftig P
    Autophagy; 2020 May; 16(5):811-825. PubMed ID: 31282275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellular models of Batten disease.
    Minnis CJ; Thornton CD; FitzPatrick LM; McKay TR
    Biochim Biophys Acta Mol Basis Dis; 2020 Sep; 1866(9):165559. PubMed ID: 31655107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell biology and function of neuronal ceroid lipofuscinosis-related proteins.
    Kollmann K; Uusi-Rauva K; Scifo E; Tyynelä J; Jalanko A; Braulke T
    Biochim Biophys Acta; 2013 Nov; 1832(11):1866-81. PubMed ID: 23402926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emerging new roles of the lysosome and neuronal ceroid lipofuscinoses.
    Mukherjee AB; Appu AP; Sadhukhan T; Casey S; Mondal A; Zhang Z; Bagh MB
    Mol Neurodegener; 2019 Jan; 14(1):4. PubMed ID: 30651094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mixed breed dog with neuronal ceroid lipofuscinosis is homozygous for a CLN5 nonsense mutation previously identified in Border Collies and Australian Cattle Dogs.
    Villani NA; Bullock G; Michaels JR; Yamato O; O'Brien DP; Mhlanga-Mutangadura T; Johnson GS; Katz ML
    Mol Genet Metab; 2019 May; 127(1):107-115. PubMed ID: 31101435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lysosomal storage diseases--the horizon expands.
    Boustany RM
    Nat Rev Neurol; 2013 Oct; 9(10):583-98. PubMed ID: 23938739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NCL disease mechanisms.
    Palmer DN; Barry LA; Tyynelä J; Cooper JD
    Biochim Biophys Acta; 2013 Nov; 1832(11):1882-93. PubMed ID: 23707513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pathogenesis and therapies for infantile neuronal ceroid lipofuscinosis (infantile CLN1 disease).
    Hawkins-Salsbury JA; Cooper JD; Sands MS
    Biochim Biophys Acta; 2013 Nov; 1832(11):1906-9. PubMed ID: 23747979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellular pathology and pathogenic aspects of neuronal ceroid lipofuscinoses.
    Kida E; Golabek AA; Wisniewski KE
    Adv Genet; 2001; 45():35-68. PubMed ID: 11332776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. KCTD7 mutations impair the trafficking of lysosomal enzymes through CLN5 accumulation to cause neuronal ceroid lipofuscinoses.
    Wang Y; Cao X; Liu P; Zeng W; Peng R; Shi Q; Feng K; Zhang P; Sun H; Wang C; Wang H
    Sci Adv; 2022 Aug; 8(31):eabm5578. PubMed ID: 35921411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Insight into the Genetic Basis, Clinical Features, and Diagnostic Methods for Neuronal Ceroid Lipofuscinosis.
    Kaminiów K; Kozak S; Paprocka J
    Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The contribution of multicellular model organisms to neuronal ceroid lipofuscinosis research.
    Huber RJ; Hughes SM; Liu W; Morgan A; Tuxworth RI; Russell C
    Biochim Biophys Acta Mol Basis Dis; 2020 Sep; 1866(9):165614. PubMed ID: 31783156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Converging roles of PSENEN/PEN2 and CLN3 in the autophagy-lysosome system.
    Klein M; Kaleem A; Oetjen S; Wünkhaus D; Binkle L; Schilling S; Gjorgjieva M; Scholz R; Gruber-Schoffnegger D; Storch S; Kins S; Drewes G; Hoffmeister-Ullerich S; Kuhl D; Hermey G
    Autophagy; 2022 Sep; 18(9):2068-2085. PubMed ID: 34964690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cln1 gene disruption in mice reveals a common pathogenic link between two of the most lethal childhood neurodegenerative lysosomal storage disorders.
    Chandra G; Bagh MB; Peng S; Saha A; Sarkar C; Moralle M; Zhang Z; Mukherjee AB
    Hum Mol Genet; 2015 Oct; 24(19):5416-32. PubMed ID: 26160911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional biology of the neuronal ceroid lipofuscinoses (NCL) proteins.
    Kyttälä A; Lahtinen U; Braulke T; Hofmann SL
    Biochim Biophys Acta; 2006 Oct; 1762(10):920-33. PubMed ID: 16839750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Progress towards understanding disease mechanisms in small vertebrate models of neuronal ceroid lipofuscinosis.
    Cooper JD; Russell C; Mitchison HM
    Biochim Biophys Acta; 2006 Oct; 1762(10):873-89. PubMed ID: 17023146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.