These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 31678588)
1. Deep learning predicts extreme preterm birth from electronic health records. Gao C; Osmundson S; Velez Edwards DR; Jackson GP; Malin BA; Chen Y J Biomed Inform; 2019 Dec; 100():103334. PubMed ID: 31678588 [TBL] [Abstract][Full Text] [Related]
2. Dense phenotyping from electronic health records enables machine learning-based prediction of preterm birth. Abraham A; Le B; Kosti I; Straub P; Velez-Edwards DR; Davis LK; Newton JM; Muglia LJ; Rokas A; Bejan CA; Sirota M; Capra JA BMC Med; 2022 Sep; 20(1):333. PubMed ID: 36167547 [TBL] [Abstract][Full Text] [Related]
3. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction. Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253 [TBL] [Abstract][Full Text] [Related]
4. Predicting post-stroke pneumonia using deep neural network approaches. Ge Y; Wang Q; Wang L; Wu H; Peng C; Wang J; Xu Y; Xiong G; Zhang Y; Yi Y Int J Med Inform; 2019 Dec; 132():103986. PubMed ID: 31629312 [TBL] [Abstract][Full Text] [Related]
5. A study of generalizability of recurrent neural network-based predictive models for heart failure onset risk using a large and heterogeneous EHR data set. Rasmy L; Wu Y; Wang N; Geng X; Zheng WJ; Wang F; Wu H; Xu H; Zhi D J Biomed Inform; 2018 Aug; 84():11-16. PubMed ID: 29908902 [TBL] [Abstract][Full Text] [Related]
6. Improving preterm newborn identification in low-resource settings with machine learning. Rittenhouse KJ; Vwalika B; Keil A; Winston J; Stoner M; Price JT; Kapasa M; Mubambe M; Banda V; Muunga W; Stringer JSA PLoS One; 2019; 14(2):e0198919. PubMed ID: 30811399 [TBL] [Abstract][Full Text] [Related]
7. Deep learning for electronic health records: A comparative review of multiple deep neural architectures. Ayala Solares JR; Diletta Raimondi FE; Zhu Y; Rahimian F; Canoy D; Tran J; Pinho Gomes AC; Payberah AH; Zottoli M; Nazarzadeh M; Conrad N; Rahimi K; Salimi-Khorshidi G J Biomed Inform; 2020 Jan; 101():103337. PubMed ID: 31916973 [TBL] [Abstract][Full Text] [Related]
8. Representation learning for clinical time series prediction tasks in electronic health records. Ruan T; Lei L; Zhou Y; Zhai J; Zhang L; He P; Gao J BMC Med Inform Decis Mak; 2019 Dec; 19(Suppl 8):259. PubMed ID: 31842854 [TBL] [Abstract][Full Text] [Related]
9. Analysis of big data for prediction of provider-initiated preterm birth and spontaneous premature deliveries and ranking the predictive features. Khatibi T; Kheyrikoochaksarayee N; Sepehri MM Arch Gynecol Obstet; 2019 Dec; 300(6):1565-1582. PubMed ID: 31650230 [TBL] [Abstract][Full Text] [Related]
10. TA-RNN: an attention-based time-aware recurrent neural network architecture for electronic health records. Al Olaimat M; Bozdag S; Bioinformatics; 2024 Jun; 40(Suppl 1):i169-i179. PubMed ID: 38940180 [TBL] [Abstract][Full Text] [Related]
11. An intelligent warning model for early prediction of cardiac arrest in sepsis patients. Layeghian Javan S; Sepehri MM; Layeghian Javan M; Khatibi T Comput Methods Programs Biomed; 2019 Sep; 178():47-58. PubMed ID: 31416562 [TBL] [Abstract][Full Text] [Related]
12. Semi-supervised Double Deep Learning Temporal Risk Prediction (SeDDLeR) with Electronic Health Records. Nogues IE; Wen J; Zhao Y; Bonzel CL; Castro VM; Lin Y; Xu S; Hou J; Cai T J Biomed Inform; 2024 Sep; 157():104685. PubMed ID: 39004109 [TBL] [Abstract][Full Text] [Related]
13. An empirical evaluation of deep learning for ICD-9 code assignment using MIMIC-III clinical notes. Huang J; Osorio C; Sy LW Comput Methods Programs Biomed; 2019 Aug; 177():141-153. PubMed ID: 31319942 [TBL] [Abstract][Full Text] [Related]
14. Predicting hospital readmission for lupus patients: An RNN-LSTM-based deep-learning methodology. Reddy BK; Delen D Comput Biol Med; 2018 Oct; 101():199-209. PubMed ID: 30195164 [TBL] [Abstract][Full Text] [Related]
15. LSTM Model for Prediction of Heart Failure in Big Data. Maragatham G; Devi S J Med Syst; 2019 Mar; 43(5):111. PubMed ID: 30888519 [TBL] [Abstract][Full Text] [Related]
16. Predicting the onset of type 2 diabetes using wide and deep learning with electronic health records. Nguyen BP; Pham HN; Tran H; Nghiem N; Nguyen QH; Do TTT; Tran CT; Simpson CR Comput Methods Programs Biomed; 2019 Dec; 182():105055. PubMed ID: 31505379 [TBL] [Abstract][Full Text] [Related]
17. Marrying Medical Domain Knowledge With Deep Learning on Electronic Health Records: A Deep Visual Analytics Approach. Li R; Yin C; Yang S; Qian B; Zhang P J Med Internet Res; 2020 Sep; 22(9):e20645. PubMed ID: 32985996 [TBL] [Abstract][Full Text] [Related]
18. Health-related quality of life may deteriorate from adolescence to young adulthood after extremely preterm birth. Båtsvik B; Vederhus BJ; Halvorsen T; Wentzel-Larsen T; Graue M; Markestad T Acta Paediatr; 2015 Sep; 104(9):948-55. PubMed ID: 26059965 [TBL] [Abstract][Full Text] [Related]
19. Accurate Prediction of Coronary Heart Disease for Patients With Hypertension From Electronic Health Records With Big Data and Machine-Learning Methods: Model Development and Performance Evaluation. Du Z; Yang Y; Zheng J; Li Q; Lin D; Li Y; Fan J; Cheng W; Chen XH; Cai Y JMIR Med Inform; 2020 Jul; 8(7):e17257. PubMed ID: 32628616 [TBL] [Abstract][Full Text] [Related]
20. Applying interpretable deep learning models to identify chronic cough patients using EHR data. Luo X; Gandhi P; Zhang Z; Shao W; Han Z; Chandrasekaran V; Turzhitsky V; Bali V; Roberts AR; Metzger M; Baker J; La Rosa C; Weaver J; Dexter P; Huang K Comput Methods Programs Biomed; 2021 Oct; 210():106395. PubMed ID: 34525412 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]