These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 31678591)
1. Molecular insights on cytochrome c and nucleotide regulation of apoptosome function and its implication in cancer. Yadav N; Gogada R; O'Malley J; Gundampati RK; Jayanthi S; Hashmi S; Lella R; Zhang D; Wang J; Kumar R; Suresh Kumar TK; Chandra D Biochim Biophys Acta Mol Cell Res; 2020 Jan; 1867(1):118573. PubMed ID: 31678591 [TBL] [Abstract][Full Text] [Related]
2. Modeling of interaction between cytochrome c and the WD domains of Apaf-1: bifurcated salt bridges underlying apoptosome assembly. Shalaeva DN; Dibrova DV; Galperin MY; Mulkidjanian AY Biol Direct; 2015 May; 10():29. PubMed ID: 26014357 [TBL] [Abstract][Full Text] [Related]
3. Loss of WD2 subdomain of Apaf-1 forms an apoptosome structure which blocks activation of caspase-3 and caspase-9. Noori AR; Tashakor A; Nikkhah M; Eriksson LA; Hosseinkhani S; Fearnhead HO Biochimie; 2021 Jan; 180():23-29. PubMed ID: 33132160 [TBL] [Abstract][Full Text] [Related]
4. Atomic structure of the apoptosome: mechanism of cytochrome c- and dATP-mediated activation of Apaf-1. Zhou M; Li Y; Hu Q; Bai XC; Huang W; Yan C; Scheres SH; Shi Y Genes Dev; 2015 Nov; 29(22):2349-61. PubMed ID: 26543158 [TBL] [Abstract][Full Text] [Related]
5. A new model for the transition of APAF-1 from inactive monomer to caspase-activating apoptosome. Reubold TF; Wohlgemuth S; Eschenburg S J Biol Chem; 2009 Nov; 284(47):32717-24. PubMed ID: 19801675 [TBL] [Abstract][Full Text] [Related]
6. Changes in Apaf-1 conformation that drive apoptosome assembly. Yuan S; Topf M; Reubold TF; Eschenburg S; Akey CW Biochemistry; 2013 Apr; 52(13):2319-27. PubMed ID: 23521171 [TBL] [Abstract][Full Text] [Related]
7. A molecular view on signal transduction by the apoptosome. Reubold TF; Eschenburg S Cell Signal; 2012 Jul; 24(7):1420-5. PubMed ID: 22446004 [TBL] [Abstract][Full Text] [Related]
8. Optimal pathways for the assembly of the Apaf-1·cytochrome c complex into apoptosome. Qi H; Jiang Y; Yin Z; Jiang K; Li L; Shuai J Phys Chem Chem Phys; 2018 Jan; 20(3):1964-1973. PubMed ID: 29299551 [TBL] [Abstract][Full Text] [Related]
9. Defective molecular timer in the absence of nucleotides leads to inefficient caspase activation. Zhang H; Gogada R; Yadav N; Lella RK; Badeaux M; Ayres M; Gandhi V; Tang DG; Chandra D PLoS One; 2011 Jan; 6(1):e16379. PubMed ID: 21297999 [TBL] [Abstract][Full Text] [Related]
10. Differential sensitivity to apoptosome apparatus activation in non-small cell lung carcinoma and the lung. Moravcikova E; Krepela E; Prochazka J; Benkova K; Pauk N Int J Oncol; 2014 May; 44(5):1443-54. PubMed ID: 24626292 [TBL] [Abstract][Full Text] [Related]
11. MicroRNA-17-mediated down-regulation of apoptotic protease activating factor 1 attenuates apoptosome formation and subsequent apoptosis of cardiomyocytes. Song S; Seo HH; Lee SY; Lee CY; Lee J; Yoo KJ; Yoon C; Choi E; Hwang KC; Lee S Biochem Biophys Res Commun; 2015 Sep; 465(2):299-304. PubMed ID: 26265044 [TBL] [Abstract][Full Text] [Related]
12. Oxidized or Reduced Cytochrome c and Axial Ligand Variants All Form the Apoptosome in Vitro. Mendez DL; Akey IV; Akey CW; Kranz RG Biochemistry; 2017 Jun; 56(22):2766-2769. PubMed ID: 28510448 [TBL] [Abstract][Full Text] [Related]
13. Intracellular nucleotides act as critical prosurvival factors by binding to cytochrome C and inhibiting apoptosome. Chandra D; Bratton SB; Person MD; Tian Y; Martin AG; Ayres M; Fearnhead HO; Gandhi V; Tang DG Cell; 2006 Jun; 125(7):1333-46. PubMed ID: 16814719 [TBL] [Abstract][Full Text] [Related]
14. Pro-apoptotic proteins released from the mitochondria regulate the protein composition and caspase-processing activity of the native Apaf-1/caspase-9 apoptosome complex. Twiddy D; Brown DG; Adrain C; Jukes R; Martin SJ; Cohen GM; MacFarlane M; Cain K J Biol Chem; 2004 May; 279(19):19665-82. PubMed ID: 14993223 [TBL] [Abstract][Full Text] [Related]
15. Role of the salt bridge between glutamate 546 and arginine 907 in preservation of autoinhibited form of Apaf-1. Shakeri R; Hosseinkhani S; Los MJ; Davoodi J; Jain MV; Cieślar-Pobuda A; Rafat M; Ardestani SK Int J Biol Macromol; 2015 Nov; 81():370-4. PubMed ID: 26277751 [TBL] [Abstract][Full Text] [Related]
16. PHAPI, CAS, and Hsp70 promote apoptosome formation by preventing Apaf-1 aggregation and enhancing nucleotide exchange on Apaf-1. Kim HE; Jiang X; Du F; Wang X Mol Cell; 2008 Apr; 30(2):239-47. PubMed ID: 18439902 [TBL] [Abstract][Full Text] [Related]
17. Calcium blocks formation of apoptosome by preventing nucleotide exchange in Apaf-1. Bao Q; Lu W; Rabinowitz JD; Shi Y Mol Cell; 2007 Jan; 25(2):181-92. PubMed ID: 17244527 [TBL] [Abstract][Full Text] [Related]
18. Interaction of translationally controlled tumor protein with Apaf-1 is involved in the development of chemoresistance in HeLa cells. Jung J; Kim HY; Maeng J; Kim M; Shin DH; Lee K BMC Cancer; 2014 Mar; 14():165. PubMed ID: 24606760 [TBL] [Abstract][Full Text] [Related]
19. A mathematical model for apoptosome assembly: the optimal cytochrome c/Apaf-1 ratio. Nakabayashi J; Sasaki A J Theor Biol; 2006 Sep; 242(2):280-7. PubMed ID: 16650876 [TBL] [Abstract][Full Text] [Related]