These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 31678744)
1. Lattice substitution and desulfurization kinetic analysis of Zn-based spinel sorbents loading onto porous silicoaluminophosphate zeolites. Liu Q; Liu B; Liu Q; Xu R; Xia H J Hazard Mater; 2020 Feb; 383():121151. PubMed ID: 31678744 [TBL] [Abstract][Full Text] [Related]
2. Highly stable and regenerable Mn-based/SBA-15 sorbents for desulfurization of hot coal gas. Zhang FM; Liu BS; Zhang Y; Guo YH; Wan ZY; Subhan F J Hazard Mater; 2012 Sep; 233-234():219-27. PubMed ID: 22835768 [TBL] [Abstract][Full Text] [Related]
3. (18)O(2) label mechanism of sulfur generation and characterization in properties over mesoporous Sm-based sorbents for hot coal gas desulfurization. Liu BS; Wan ZY; Wang F; Zhan YP; Tian M; Cheung AS J Hazard Mater; 2014 Feb; 267():229-37. PubMed ID: 24462892 [TBL] [Abstract][Full Text] [Related]
4. Probing mesoporous character, desulfurization capability and kinetic mechanism of synergistic stabilizing sorbent Ca Liu Q; Liu B; Liu Q; Guo S; Wu X J Colloid Interface Sci; 2021 Apr; 587():743-754. PubMed ID: 33234310 [TBL] [Abstract][Full Text] [Related]
5. Improvement of the desulfurization and regeneration properties through the control of pore structures of the Zn-Ti-based H2S removal sorbents. Jung SY; Jun HK; Lee SJ; Lee TJ; Ryu CK; Kim JC Environ Sci Technol; 2005 Dec; 39(23):9324-30. PubMed ID: 16382959 [TBL] [Abstract][Full Text] [Related]
6. Formation of (FexMn(2-x))O3 solid solution and high sulfur capacity properties of Mn-based/M41 sorbents for hot coal gas desulfurization. Zhang Y; Liu BS; Zhang FM; Zhang ZF J Hazard Mater; 2013 Mar; 248-249():81-8. PubMed ID: 23337625 [TBL] [Abstract][Full Text] [Related]
7. High-sulfur capacity and regenerable Zn-based sorbents derived from layered double hydroxide for hot coal gas desulfurization. Wu M; Chang B; Lim TT; Oh WD; Lei J; Mi J J Hazard Mater; 2018 Oct; 360():391-401. PubMed ID: 30130697 [TBL] [Abstract][Full Text] [Related]
8. High H Xia H; Liu B J Hazard Mater; 2017 Feb; 324(Pt B):281-290. PubMed ID: 27810326 [TBL] [Abstract][Full Text] [Related]
9. Effect of lignite as support precursor on deep desulfurization performance of semicoke supported zinc oxide sorbent in hot coal gas. Li T; Ren X; Bao L; Wang M; Bao W; Chang L RSC Adv; 2020 Mar; 10(22):12780-12787. PubMed ID: 35492103 [TBL] [Abstract][Full Text] [Related]
10. Semi-Coke-Supported Mixed Metal Oxides for Hydrogen Sulfide Removal at High Temperatures. Jie M; Yongyan Z; Yongsheng Z; Ting G; Huiling F Environ Eng Sci; 2012 Jul; 29(7):611-616. PubMed ID: 22783061 [TBL] [Abstract][Full Text] [Related]
11. Effect of precursor and preparation method on manganese based activated carbon sorbents for removing H2S from hot coal gas. Wang J; Qiu B; Han L; Feng G; Hu Y; Chang L; Bao W J Hazard Mater; 2012 Apr; 213-214():184-92. PubMed ID: 22341981 [TBL] [Abstract][Full Text] [Related]
12. H Zou S; Liao Y; Xiong S; Huang N; Geng Y; Yang S Environ Sci Technol; 2017 Mar; 51(6):3426-3434. PubMed ID: 28226212 [TBL] [Abstract][Full Text] [Related]
13. Regenerable Fe-Mn-ZnO/SiO2 sorbents for room temperature removal of H2S from fuel reformates: performance, active sites, Operando studies. Dhage P; Samokhvalov A; Repala D; Duin EC; Tatarchuk BJ Phys Chem Chem Phys; 2011 Feb; 13(6):2179-87. PubMed ID: 21132188 [TBL] [Abstract][Full Text] [Related]
14. Bimetallic-MOF-Derived Zn Ru Z; Zhang X; Zhang M; Mi J; Cao C; Yan Z; Ge M; Liu H; Wang J; Zhang W; Cai W; Lai Y; Feng Y Environ Sci Technol; 2022 Dec; 56(23):17288-17297. PubMed ID: 36214751 [TBL] [Abstract][Full Text] [Related]
16. Red soil as a regenerable sorbent for high temperature removal of hydrogen sulfide from coal gas. Ko TH; Chu H; Lin HP; Peng CY J Hazard Mater; 2006 Aug; 136(3):776-83. PubMed ID: 16469434 [TBL] [Abstract][Full Text] [Related]
17. Multiform Sulfur Adsorption Centers and Copper-Terminated Active Sites of Nano-CuS for Efficient Elemental Mercury Capture from Coal Combustion Flue Gas. Yang Z; Li H; Feng S; Li P; Liao C; Liu X; Zhao J; Yang J; Lee PH; Shih K Langmuir; 2018 Jul; 34(30):8739-8749. PubMed ID: 29983072 [TBL] [Abstract][Full Text] [Related]
18. Influence of modifications on the deep desulfurization behavior of NaY and Na13X zeolites in gasoline. Guo X; Bao L; Chang L; Bao W; Liao J Environ Sci Pollut Res Int; 2019 May; 26(13):13138-13146. PubMed ID: 30895551 [TBL] [Abstract][Full Text] [Related]
19. High temperature removal of hydrogen sulfide using an N-150 sorbent. Ko TH; Chu H; Chaung LK; Tseng TK J Hazard Mater; 2004 Oct; 114(1-3):145-52. PubMed ID: 15511585 [TBL] [Abstract][Full Text] [Related]
20. AMn Wang Z; Liu J; Yang Y; Yu Y; Yan X; Zhang Z J Hazard Mater; 2020 Apr; 388():121738. PubMed ID: 31812479 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]