BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 31678806)

  • 1. Estimation of the economy of heterotrophic microalgae- and insect-based food waste utilization processes.
    Pleissner D; Smetana S
    Waste Manag; 2020 Feb; 102():198-203. PubMed ID: 31678806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nutrients recycling and biomass production from Chlorella pyrenoidosa culture using anaerobic food processing wastewater in a pilot-scale tubular photobioreactor.
    Tan XB; Wan XP; Yang LB; Wang X; Meng J; Jiang MJ; Pi HJ
    Chemosphere; 2021 May; 270():129459. PubMed ID: 33388504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autotrophic and heterotrophic microalgae and cyanobacteria cultivation for food and feed: life cycle assessment.
    Smetana S; Sandmann M; Rohn S; Pleissner D; Heinz V
    Bioresour Technol; 2017 Dec; 245(Pt A):162-170. PubMed ID: 28892686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Utilization of organic residues using heterotrophic microalgae and insects.
    Pleissner D; Rumpold BA
    Waste Manag; 2018 Feb; 72():227-239. PubMed ID: 29150257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using straw hydrolysate to cultivate Chlorella pyrenoidosa for high-value biomass production and the nitrogen regulation for biomass composition.
    Zhang TY; Wang XX; Wu YH; Wang JH; Deantes-Espinosa VM; Zhuang LL; Hu HY; Wu GX
    Bioresour Technol; 2017 Nov; 244(Pt 2):1254-1260. PubMed ID: 28645566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advances on food waste pretreatment technology via microalgae for source of polyhydroxyalkanoates.
    Chong JWR; Yew GY; Khoo KS; Ho SH; Show PL
    J Environ Manage; 2021 Sep; 293():112782. PubMed ID: 34052610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of volatile fatty acids on the growth and lipid properties of two microalgae strains during batch heterotrophic cultivation.
    Su K; Song M; Yu Z; Wang C; Sun J; Li X; Liu N; Mou Y; Lu T
    Chemosphere; 2021 Nov; 283():131204. PubMed ID: 34467947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Food waste as nutrient source in heterotrophic microalgae cultivation.
    Pleissner D; Lam WC; Sun Z; Lin CS
    Bioresour Technol; 2013 Jun; 137():139-46. PubMed ID: 23587816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nutrient removal from pickle industry wastewater by cultivation of Chlorella pyrenoidosa for lipid production.
    Wan L; Wu Y; Zhang X; Zhang W
    Water Sci Technol; 2019 Jun; 79(11):2166-2174. PubMed ID: 31318354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterotrophic and mixotrophic cultivation of microalgae to simultaneously achieve furfural wastewater treatment and lipid production.
    Cheng P; Huang J; Song X; Yao T; Jiang J; Zhou C; Yan X; Ruan R
    Bioresour Technol; 2022 Apr; 349():126888. PubMed ID: 35202828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using agro-industrial wastes for the cultivation of microalgae and duckweeds: Contamination risks and biomass safety concerns.
    Markou G; Wang L; Ye J; Unc A
    Biotechnol Adv; 2018; 36(4):1238-1254. PubMed ID: 29673973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Heterotrophic cultivation of Chlorella for beer brewery wastewater treatment].
    Qu C; Shi X
    Wei Sheng Wu Xue Bao; 2009 Jun; 49(6):780-5. PubMed ID: 19673414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and heterotrophic cultivation of mixotrophic microalgae strains for domestic wastewater treatment and lipid production under dark condition.
    Zhang TY; Wu YH; Zhu SF; Li FM; Hu HY
    Bioresour Technol; 2013 Dec; 149():586-9. PubMed ID: 24140357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Study on the Chlorella pyrenoidosa cultivation technology based on the excess sludge utilization].
    Ji WW; Xia HL; Fang ZG; Liu HJ
    Huan Jing Ke Xue; 2013 Feb; 34(2):622-8. PubMed ID: 23668132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A symbiotic yeast to enhance heterotrophic and mixotrophic cultivation of Chlorella pyrenoidosa using sucrose as the carbon source.
    Tian YT; Wang X; Cui YH; Wang SK
    Bioprocess Biosyst Eng; 2020 Dec; 43(12):2243-2252. PubMed ID: 32671549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oilfield-produced water as a medium for the growth of Chlorella pyrenoidosa outdoor in an arid region.
    Rahmani A; Zerrouki D; Tabchouche A; Djafer L
    Environ Sci Pollut Res Int; 2022 Dec; 29(58):87509-87518. PubMed ID: 35809171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances in production of bioplastics by microalgae using food waste hydrolysate and wastewater: A review.
    Chong JWR; Khoo KS; Yew GY; Leong WH; Lim JW; Lam MK; Ho YC; Ng HS; Munawaroh HSH; Show PL
    Bioresour Technol; 2021 Dec; 342():125947. PubMed ID: 34563823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of municipal wastewaters at various stages of treatment process as potential growth media for Chlorella sorokiniana under different modes of cultivation.
    Ramsundar P; Guldhe A; Singh P; Bux F
    Bioresour Technol; 2017 Mar; 227():82-92. PubMed ID: 28013140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of microalgal biomass and lipid productivities by a model of photoautotrophic culture with heterotrophic cells as seed.
    Han F; Huang J; Li Y; Wang W; Wang J; Fan J; Shen G
    Bioresour Technol; 2012 Aug; 118():431-7. PubMed ID: 22717560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterotrophic cultivation of Chlorella pyrenoidosa using sucrose as the sole carbon source by co-culture with Rhodotorula glutinis.
    Wang S; Wu Y; Wang X
    Bioresour Technol; 2016 Nov; 220():615-620. PubMed ID: 27619713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.