These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

428 related articles for article (PubMed ID: 31678850)

  • 1. Regulation of cadmium tolerance and accumulation by miR156 in Arabidopsis.
    Zhang L; Ding H; Jiang H; Wang H; Chen K; Duan J; Feng S; Wu G
    Chemosphere; 2020 Mar; 242():125168. PubMed ID: 31678850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Brassica juncea BjCdR15, an ortholog of Arabidopsis TGA3, is a regulator of cadmium uptake, transport and accumulation in shoots and confers cadmium tolerance in transgenic plants.
    Farinati S; DalCorso G; Varotto S; Furini A
    New Phytol; 2010 Mar; 185(4):964-78. PubMed ID: 20028476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. miR156 modulates rhizosphere acidification in response to phosphate limitation in Arabidopsis.
    Lei KJ; Lin YM; An GY
    J Plant Res; 2016 Mar; 129(2):275-84. PubMed ID: 26659856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A MYB4-MAN3-Mannose-MNB1 signaling cascade regulates cadmium tolerance in Arabidopsis.
    Yan X; Huang Y; Song H; Chen F; Geng Q; Hu M; Zhang C; Wu X; Fan T; Cao S
    PLoS Genet; 2021 Jun; 17(6):e1009636. PubMed ID: 34181654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Arabidopsis APR2 positively regulates cadmium tolerance through glutathione-dependent pathway.
    Xu Z; Wang M; Xu D; Xia Z
    Ecotoxicol Environ Saf; 2020 Jan; 187():109819. PubMed ID: 31654864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The miR156-SPL9-DFR pathway coordinates the relationship between development and abiotic stress tolerance in plants.
    Cui LG; Shan JX; Shi M; Gao JP; Lin HX
    Plant J; 2014 Dec; 80(6):1108-17. PubMed ID: 25345491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury.
    Park J; Song WY; Ko D; Eom Y; Hansen TH; Schiller M; Lee TG; Martinoia E; Lee Y
    Plant J; 2012 Jan; 69(2):278-88. PubMed ID: 21919981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HMA4 expression in tobacco reduces Cd accumulation due to the induction of the apoplastic barrier.
    Siemianowski O; Barabasz A; Kendziorek M; Ruszczynska A; Bulska E; Williams LE; Antosiewicz DM
    J Exp Bot; 2014 Mar; 65(4):1125-39. PubMed ID: 24420575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The CTR/COPT-dependent copper uptake and SPL7-dependent copper deficiency responses are required for basal cadmium tolerance in A. thaliana.
    Gayomba SR; Jung HI; Yan J; Danku J; Rutzke MA; Bernal M; Krämer U; Kochian LV; Salt DE; Vatamaniuk OK
    Metallomics; 2013 Sep; 5(9):1262-75. PubMed ID: 23835944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of the Phosphate-Deficient Responses by MicroRNA156 and its Targeted SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 3 in Arabidopsis.
    Lei KJ; Lin YM; Ren J; Bai L; Miao YC; An GY; Song CP
    Plant Cell Physiol; 2016 Jan; 57(1):192-203. PubMed ID: 26647245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The polish wheat (Triticum polonicum L.) TpSnRK2.10 and TpSnRK2.11 meditate the accumulation and the distribution of cd and Fe in transgenic Arabidopsis plants.
    Wang R; Wang C; Yao Q; Xiao X; Fan X; Sha L; Zeng J; Kang H; Zhang H; Zhou Y; Wang Y
    BMC Genomics; 2019 Mar; 20(1):210. PubMed ID: 30866815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EcAGL enhances cadmium tolerance in transgenic Arabidopsis thaliana through inhibits cadmium transport and ethylene synthesis pathway.
    Zuo D; Hu M; Zhou W; Lei F; Zhao J; Gu L
    Plant Physiol Biochem; 2023 Aug; 201():107900. PubMed ID: 37482029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-overexpression FIT with AtbHLH38 or AtbHLH39 in Arabidopsis-enhanced cadmium tolerance via increased cadmium sequestration in roots and improved iron homeostasis of shoots.
    Wu H; Chen C; Du J; Liu H; Cui Y; Zhang Y; He Y; Wang Y; Chu C; Feng Z; Li J; Ling HQ
    Plant Physiol; 2012 Feb; 158(2):790-800. PubMed ID: 22184655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overexpression of Arabidopsis phytochelatin synthase in tobacco plants enhances Cd(2+) tolerance and accumulation but not translocation to the shoot.
    Pomponi M; Censi V; Di Girolamo V; De Paolis A; di Toppi LS; Aromolo R; Costantino P; Cardarelli M
    Planta; 2006 Jan; 223(2):180-90. PubMed ID: 16133212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A role for CK2 β subunit 4 in the regulation of plant growth, cadmium accumulation and H
    Zhu J; Wang WS; Ma D; Zhang LY; Ren F; Yuan TT
    Plant Physiol Biochem; 2016 Dec; 109():240-247. PubMed ID: 27750098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Cadmium Treatment on the Uptake and Translocation of Sulfate in Arabidopsis thaliana.
    Yamaguchi C; Takimoto Y; Ohkama-Ohtsu N; Hokura A; Shinano T; Nakamura T; Suyama A; Maruyama-Nakashita A
    Plant Cell Physiol; 2016 Nov; 57(11):2353-2366. PubMed ID: 27590710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of miR156/SPLs modules in Arabidopsis lateral root development.
    Yu N; Niu QW; Ng KH; Chua NH
    Plant J; 2015 Aug; 83(4):673-85. PubMed ID: 26096676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergetic modulation of plant cadmium tolerance via MYB75-mediated ROS homeostasis and transcriptional regulation.
    Zheng T; Lu X; Yang F; Zhang D
    Plant Cell Rep; 2022 Jul; 41(7):1515-1530. PubMed ID: 35503475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Root hair abundance impacts cadmium accumulation in Arabidopsis thaliana shoots.
    Kohanová J; Martinka M; Vaculík M; White PJ; Hauser MT; Lux A
    Ann Bot; 2018 Nov; 122(5):903-914. PubMed ID: 29394308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The kinase CIPK11 functions as a positive regulator in cadmium stress response in Arabidopsis.
    Gu S; Wang X; Bai J; Wei T; Sun M; Zhu L; Wang M; Zhao Y; Wei W
    Gene; 2021 Mar; 772():145372. PubMed ID: 33346096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.