These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 31679021)
1. Rapid determination of the content of digestible energy and metabolizable energy in sorghum fed to growing pigs by near-infrared reflectance spectroscopy1. Hu J; Li J; Pan L; Piao X; Sui L; Xie G; Zhang S; Zhang L; Wang J J Anim Sci; 2019 Dec; 97(12):4855-4864. PubMed ID: 31679021 [TBL] [Abstract][Full Text] [Related]
2. Use of near-infrared reflectance spectroscopy for the rapid determination of the digestible energy and metabolizable energy content of corn fed to growing pigs. Li J; Li Q; Li D; Chen Y; Wang X; Yang W; Zhang L J Anim Sci Biotechnol; 2016; 7():45. PubMed ID: 27493726 [TBL] [Abstract][Full Text] [Related]
3. Tannin is a key factor in the determination and prediction of energy content in sorghum grains fed to growing pigs. Pan L; Li P; Ma XK; Xu YT; Tian QY; Liu L; Li DF; Piao XS J Anim Sci; 2016 Jul; 94(7):2879-89. PubMed ID: 27482674 [TBL] [Abstract][Full Text] [Related]
4. Regression and direct methods do not give different estimates of digestible and metabolizable energy values of barley, sorghum, and wheat for pigs. Bolarinwa OA; Adeola O J Anim Sci; 2016 Feb; 94(2):610-8. PubMed ID: 27065131 [TBL] [Abstract][Full Text] [Related]
5. Concentration of digestible and metabolizable energy, standardized ileal digestibility, and growth performance of pigs fed diets containing sorghum produced in the United States or corn produced in China. Pan L; Shang QH; Wu Y; Ma XK; Long SF; Liu L; Li DF; Piao XS J Anim Sci; 2017 Nov; 95(11):4880-4892. PubMed ID: 29293716 [TBL] [Abstract][Full Text] [Related]
6. Energy evaluation of extruded compound foods for dogs by near-infrared spectroscopy. Castrillo C; Baucells M; Vicente F; Muñoz F; Andueza D J Anim Physiol Anim Nutr (Berl); 2005; 89(3-6):194-8. PubMed ID: 15787994 [TBL] [Abstract][Full Text] [Related]
7. Using a computer-controlled simulated digestion system to predict the energetic value of corn for ducks. Zhao F; Zhang L; Mi BM; Zhang HF; Hou SS; Zhang ZY Poult Sci; 2014 Jun; 93(6):1410-20. PubMed ID: 24879691 [TBL] [Abstract][Full Text] [Related]
8. Predicting the metabolizable energy and metabolizability of gross energy of conventional feedstuffs for Muscovy duck using in vitro digestion method. Wang H; Wang X; Zhan Y; Peng B; Wang W; Yang L; Zhu Y J Anim Sci; 2023 Jan; 101():. PubMed ID: 36630704 [TBL] [Abstract][Full Text] [Related]
9. [NIRS method for determination of meat and bone meal content in ruminant concentrates]. Yang ZL; Han LJ; Li QF; Liu X Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Jun; 28(6):1278-82. PubMed ID: 18800704 [TBL] [Abstract][Full Text] [Related]
10. Lack of relationship between either specific weight or presence of the 1B1R gene and nutritive value of wheat in broiler diets. McCracken KJ; Owens B; Park R; McNab J Br Poult Sci; 2008 Jul; 49(4):463-74. PubMed ID: 18704793 [TBL] [Abstract][Full Text] [Related]
11. Estimating hydrogen cyanide in forage sorghum ( Sorghum bicolor ) by near-infrared spectroscopy. Fox GP; O'Donnell NH; Stewart PN; Gleadow RM J Agric Food Chem; 2012 Jun; 60(24):6183-7. PubMed ID: 22594883 [TBL] [Abstract][Full Text] [Related]
12. Wheat bran reduces concentrations of digestible, metabolizable, and net energy in diets fed to pigs, but energy values in wheat bran determined by the difference procedure are not different from values estimated from a linear regression procedure. Jaworski NW; Liu DW; Li DF; Stein HH J Anim Sci; 2016 Jul; 94(7):3012-21. PubMed ID: 27482688 [TBL] [Abstract][Full Text] [Related]
13. Nutrient composition, digestible and metabolizable energy content, and prediction of energy for animal protein byproducts in finishing pig diets. Kerr BJ; Jha R; Urriola PE; Shurson GC J Anim Sci; 2017 Jun; 95(6):2614-2626. PubMed ID: 28727048 [TBL] [Abstract][Full Text] [Related]
14. Nutritional evaluation of commercial dry dog foods by near infrared reflectance spectroscopy. Alomar D; Hodgkinson S; Abarzúa D; Fuchslocher R; Alvarado C; Rosales E J Anim Physiol Anim Nutr (Berl); 2006 Jun; 90(5-6):223-9. PubMed ID: 16684143 [TBL] [Abstract][Full Text] [Related]
15. Prediction of digestible energy value of extruded dog food: comparison of methods. Hervera M; Baucells MD; Torre C; Buj A; Castrillo C J Anim Physiol Anim Nutr (Berl); 2008 Jun; 92(3):253-9. PubMed ID: 18477305 [TBL] [Abstract][Full Text] [Related]
16. An automatically progressed computer-controlled simulated digestion system to predict digestible and metabolizable energy of unconventional plant protein meals for growing pigs. Du Z; Wang Y; Song M; Zeng S; Gao L; Zhao J; Zhao F Anim Nutr; 2022 Sep; 10():178-187. PubMed ID: 35785257 [TBL] [Abstract][Full Text] [Related]
17. Available energy and amino acid digestibility of yellow dent corn fed to growing pigs1. Lyu Z; Li Q; Zhang S; Lai C; Huang C J Anim Sci; 2019 Jul; 97(7):2952-2964. PubMed ID: 31074782 [TBL] [Abstract][Full Text] [Related]
18. [Comparison of PLS and SMLR for nondestructive determination of sugar content in honey peach using NIRS]. Xu HR; Wang HJ; Huang K; Ying YB; Yang C; Qian H; Hu J Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Nov; 28(11):2523-6. PubMed ID: 19271481 [TBL] [Abstract][Full Text] [Related]
19. [Prediction of IVDMD with near infrared reflectance spectroscopy (NIRS) in maize stalk]. Bai QL; Chen SJ; Dong XL; Meng QX; Yan YL; Dai JR Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Feb; 26(2):271-4. PubMed ID: 16826904 [TBL] [Abstract][Full Text] [Related]
20. Predicting the digestible energy of corn determined with growing swine from nutrient composition and cross-species measurements. Smith B; Hassen A; Hinds M; Rice D; Jones D; Sauber T; Iiams C; Sevenich D; Allen R; Owens F; McNaughton J; Parsons C J Anim Sci; 2015 Mar; 93(3):1025-38. PubMed ID: 26020880 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]