These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 31679060)

  • 1. Differences in Spatiotemporal Patterns of Vehicle Collisions with Wildlife and Livestock.
    Creech TG; Fairbank ER; Clevenger AP; Callahan AR; Ament RJ
    Environ Manage; 2019 Dec; 64(6):736-745. PubMed ID: 31679060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial wildlife-vehicle collision models: a review of current work and its application to transportation mitigation projects.
    Gunson KE; Mountrakis G; Quackenbush LJ
    J Environ Manage; 2011 Apr; 92(4):1074-82. PubMed ID: 21190788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of data sets varying in spatial accuracy used to predict the occurrence of wildlife-vehicle collisions.
    Gunson KE; Clevenger AP; Ford AT; Bissonette JA; Hardy A
    Environ Manage; 2009 Aug; 44(2):268-77. PubMed ID: 19452205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A spatiotemporal risk prediction of wildlife-vehicle collisions using machine learning for dynamic warnings.
    Pagany R
    J Safety Res; 2022 Dec; 83():269-281. PubMed ID: 36481018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Canadian wildlife-vehicle collisions: An examination of knowledge and behavior for collision prevention.
    Vanlaar WGM; Barrett H; Hing MM; Brown SW; Robertson RD
    J Safety Res; 2019 Feb; 68():181-186. PubMed ID: 30876509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Animal-vehicle collisions in Texas: How to protect travelers and animals on roadways.
    Wilkins DC; Kockelman KM; Jiang N
    Accid Anal Prev; 2019 Oct; 131():157-170. PubMed ID: 31277019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On reliable identification of factors influencing wildlife-vehicle collisions along roads.
    Bíl M; Andrášik R; Duľa M; Sedoník J
    J Environ Manage; 2019 May; 237():297-304. PubMed ID: 30807975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lunar Phases and Wildlife-Vehicle Collisions: Application of the Lunar Disk Percentage Method.
    Ignatavičius G; Ulevičius A; Valskys V; Galinskaitė L; Busher PE; Trakimas G
    Animals (Basel); 2021 Mar; 11(3):. PubMed ID: 33810052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporal patterns of ungulate-vehicle collisions in Lithuania.
    Kučas A; Balčiauskas L
    J Environ Manage; 2020 Nov; 273():111172. PubMed ID: 32768765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling road traffic safety based on point patterns of wildlife-vehicle collisions.
    Llagostera P; Comas C; López N
    Sci Total Environ; 2022 Nov; 846():157237. PubMed ID: 35817101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In the wrong place at the wrong time: Moose and deer movement patterns influence wildlife-vehicle collision risk.
    Laliberté J; St-Laurent MH
    Accid Anal Prev; 2020 Feb; 135():105365. PubMed ID: 31775075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wildlife-vehicle collisions: The disproportionate risk of injury faced by motorcyclists.
    Bíl M; Andrášik R; Bílová M
    Injury; 2024 May; 55(5):111301. PubMed ID: 38158319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The impact of the COVID-19 lockdowns on wildlife-vehicle collisions in the UK.
    Raymond S; Spencer M; Chadwick EA; Madden JR; Perkins SE
    J Anim Ecol; 2023 Jun; 92(6):1244-1255. PubMed ID: 37072892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring wildlife-vehicle collisions in the information age: how smartphones can improve data collection.
    Olson DD; Bissonette JA; Cramer PC; Green AD; Davis ST; Jackson PJ; Coster DC
    PLoS One; 2014; 9(6):e98613. PubMed ID: 24897502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Behavioural reactions to oncoming vehicles as a crucial aspect of wildlife-vehicle collision risk in three common wildlife species.
    Brieger F; Kämmerle JL; Hagen R; Suchant R
    Accid Anal Prev; 2022 Apr; 168():106564. PubMed ID: 35183917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Consistent patterns of vehicle collision risk for six mammal species.
    Visintin C; van der Ree R; McCarthy MA
    J Environ Manage; 2017 Oct; 201():397-406. PubMed ID: 28704730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wildlife warning reflectors do not mitigate wildlife-vehicle collisions on roads.
    Benten A; Hothorn T; Vor T; Ammer C
    Accid Anal Prev; 2018 Nov; 120():64-73. PubMed ID: 30096449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Permanent daylight saving time would reduce deer-vehicle collisions.
    Cunningham CX; Nuñez TA; Hentati Y; Sullender B; Breen C; Ganz TR; Kreling SES; Shively KA; Reese E; Miles J; Prugh LR
    Curr Biol; 2022 Nov; 32(22):4982-4988.e4. PubMed ID: 36327981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding spatio-temporal patterns of deer-vehicle collisions to improve roadkill mitigation.
    Mayer M; Coleman Nielsen J; Elmeros M; Sunde P
    J Environ Manage; 2021 Oct; 295():113148. PubMed ID: 34186315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Daylight Saving Time clock shifts on white-tailed deer-vehicle collision rates.
    Abeyrathna WANU; Langen TA
    J Environ Manage; 2021 Aug; 292():112774. PubMed ID: 34015612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.