These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 31679105)

  • 1. Effects of S-glutathionylation on the passive force-length relationship in skeletal muscle fibres of rats and humans.
    Watanabe D; Lamboley CR; Lamb GD
    J Muscle Res Cell Motil; 2020 Sep; 41(2-3):239-250. PubMed ID: 31679105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fatigue-induced change in T-system excitability and its major cause in rat fast-twitch skeletal muscle in vivo.
    Watanabe D; Wada M
    J Physiol; 2020 Nov; 598(22):5195-5211. PubMed ID: 32833287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of oxidation and reduction on contractile function in skeletal muscle fibres of the rat.
    Lamb GD; Posterino GS
    J Physiol; 2003 Jan; 546(Pt 1):149-63. PubMed ID: 12509485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydroxyl radical and glutathione interactions alter calcium sensitivity and maximum force of the contractile apparatus in rat skeletal muscle fibres.
    Murphy RM; Dutka TL; Lamb GD
    J Physiol; 2008 Apr; 586(8):2203-16. PubMed ID: 18308823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contractile properties and sarcoplasmic reticulum calcium content in type I and type II skeletal muscle fibres in active aged humans.
    Lamboley CR; Wyckelsma VL; Dutka TL; McKenna MJ; Murphy RM; Lamb GD
    J Physiol; 2015 Jun; 593(11):2499-514. PubMed ID: 25809942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Titin force enhancement following active stretch of skinned skeletal muscle fibres.
    Powers K; Joumaa V; Jinha A; Moo EK; Smith IC; Nishikawa K; Herzog W
    J Exp Biol; 2017 Sep; 220(Pt 17):3110-3118. PubMed ID: 28637823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of sulphydryl modification on skinned rat skeletal muscle fibres using 5,5'-dithiobis(2-nitrobenzoic acid).
    Wilson GJ; dos Remedios CG; Stephenson DG; Williams DA
    J Physiol; 1991 Jun; 437():409-30. PubMed ID: 1890642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of passive force in single skeletal muscle fibres.
    Rassier DE; Lee EJ; Herzog W
    Biol Lett; 2005 Sep; 1(3):342-5. PubMed ID: 17148202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Skeletal muscle fibre swelling contributes to force depression in rats and humans: a mechanically-skinned fibre study.
    Watanabe D; Dutka TL; Lamboley CR; Lamb GD
    J Muscle Res Cell Motil; 2019 Dec; 40(3-4):343-351. PubMed ID: 31175519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of reducing agents and oxidants on excitation-contraction coupling in skeletal muscle fibres of rat and toad.
    Posterino GS; Lamb GD
    J Physiol; 1996 Nov; 496 ( Pt 3)(Pt 3):809-25. PubMed ID: 8930846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of nifedipine on depolarization-induced force responses in skinned skeletal muscle fibres of rat and toad.
    Posterino GS; Lamb GD
    J Muscle Res Cell Motil; 1998 Jan; 19(1):53-65. PubMed ID: 9477377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Twitch and tetanic force responses and longitudinal propagation of action potentials in skinned skeletal muscle fibres of the rat.
    Posterino GS; Lamb GD; Stephenson DG
    J Physiol; 2000 Aug; 527 Pt 1(Pt 1):131-7. PubMed ID: 10944176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of titin isoforms in red and white muscle fibres of carp (Cyprinus carpio L.) exposed to different sarcomere strains during swimming.
    Spierts IL; Akster HA; Granzier HL
    J Comp Physiol B; 1997 Nov; 167(8):543-51. PubMed ID: 9404015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of high-intensity intermittent exercise on the contractile properties of human type I and type II skeletal muscle fibers.
    Lamboley CR; Rouffet DM; Dutka TL; McKenna MJ; Lamb GD
    J Appl Physiol (1985); 2020 May; 128(5):1207-1216. PubMed ID: 32213115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of chelerythrine on depolarization-induced force responses in skinned fast skeletal muscle fibres of the rat.
    Han R; Bakker AJ
    Br J Pharmacol; 2003 Feb; 138(3):417-26. PubMed ID: 12569066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of sarcomere length on the force-pCa relation in fast- and slow-twitch skinned muscle fibres from the rat.
    Stephenson DG; Williams DA
    J Physiol; 1982 Dec; 333():637-53. PubMed ID: 7182478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of inorganic phosphate and arsenate on both passive muscle visco-elasticity and maximum Ca2+ activated tension in chemically skinned rat fast and slow twitch muscle fibres.
    Mutungi G
    J Muscle Res Cell Motil; 2003; 24(1):65-75. PubMed ID: 12953837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disruption of excitation-contraction coupling and titin by endogenous Ca2+-activated proteases in toad muscle fibres.
    Verburg E; Murphy RM; Stephenson DG; Lamb GD
    J Physiol; 2005 May; 564(Pt 3):775-90. PubMed ID: 15746171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of impaired myofibril and ryanodine receptor function to prolonged low-frequency force depression after in situ stimulation in rat skeletal muscle.
    Watanabe D; Kanzaki K; Kuratani M; Matsunaga S; Yanaka N; Wada M
    J Muscle Res Cell Motil; 2015 Jun; 36(3):275-86. PubMed ID: 25697123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unloaded shortening of skinned mammalian skeletal muscle fibres: effects of the experimental approach and passive force.
    Galler S; Hilber K
    J Muscle Res Cell Motil; 1994 Aug; 15(4):400-12. PubMed ID: 7806634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.