These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 31679322)

  • 41. Osseointegration of autograft versus osteogenic protein-1 in posterolateral spinal arthrodesis: emphasis on the comparative mechanisms of bone induction.
    Cunningham BW; Shimamoto N; Sefter JC; Dmitriev AE; Orbegoso CM; McCarthy EF; Fedder IL; McAfee PC
    Spine J; 2002; 2(1):11-24. PubMed ID: 14588284
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Vertebral plate regeneration induced by radiation-sterilized allogeneic bone sheets in sheep.
    Tang X; Yang SH; Xu WH; Li J; Yang C; Ye ZW; Fu DH; Li K; Li BX; Sun SQ; Yu CN
    Chin J Traumatol; 2007 Feb; 10(1):34-9. PubMed ID: 17229348
    [TBL] [Abstract][Full Text] [Related]  

  • 43. In vivo evaluation of bone marrow stromal-derived osteoblasts-porous calcium phosphate ceramic composites as bone graft substitute for lumbar intervertebral spinal fusion.
    Kai T; Shao-qing G; Geng-ting D
    Spine (Phila Pa 1976); 2003 Aug; 28(15):1653-8. PubMed ID: 12897487
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Video-assisted lateral intertransverse process arthrodesis. Validation of a new minimally invasive lumbar spinal fusion technique in the rabbit and nonhuman primate (rhesus) models.
    Boden SD; Moskovitz PA; Morone MA; Toribitake Y
    Spine (Phila Pa 1976); 1996 Nov; 21(22):2689-97. PubMed ID: 8961457
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of a bone graft substitute consisting of porous gradient HA/ZrO
    Shao RX; Quan RF; Wang T; Du WB; Jia GY; Wang D; Lv LB; Xu CY; Wei XC; Wang JF; Yang DS
    J Tissue Eng Regen Med; 2018 Mar; 12(3):e1813-e1825. PubMed ID: 29055138
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Single level lumbar laminectomy alters segmental biomechanical behavior without affecting adjacent segments.
    Bisschop A; van Engelen SJ; Kingma I; Holewijn RM; Stadhouder A; van der Veen AJ; van Dieën JH; van Royen BJ
    Clin Biomech (Bristol, Avon); 2014 Sep; 29(8):912-7. PubMed ID: 25028214
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Experimental study on bone marrow mesenchymal stem cells seeded in chitosan-alginate scaffolds for repairing spinal cord injury].
    Wang D; Wen Y; Lan X; Li H
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2010 Feb; 24(2):190-6. PubMed ID: 20187451
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A biomechanical study of the recovery in spinal stability of flexion/extension and torsion after the resection of different posterior lumbar structures in a sheep model.
    Jia H; Zhu S; Ma J; Wang J; Feng R; Xing D; Yang Y; Ma B; Chen Y; Yu J; Ma X
    Proc Inst Mech Eng H; 2013 Aug; 227(8):866-74. PubMed ID: 23695650
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The effects of lentiviral gene therapy with bone morphogenetic protein-2-producing bone marrow cells on spinal fusion in rats.
    Miyazaki M; Sugiyama O; Tow B; Zou J; Morishita Y; Wei F; Napoli A; Sintuu C; Lieberman JR; Wang JC
    J Spinal Disord Tech; 2008 Jul; 21(5):372-9. PubMed ID: 18600149
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bone graft substitute using hydroxyapatite scaffold seeded with tissue engineered autologous osteoprogenitor cells in spinal fusion: early result in a sheep model.
    Tan KK; Tan GH; Shamsul BS; Chua KH; Ng MH; Ruszymah BH; Aminuddin BS; Loqman MY
    Med J Malaysia; 2005 Jul; 60 Suppl C():53-8. PubMed ID: 16381285
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Enhancement of posterolateral lumbar spine fusion using recombinant human bone morphogenetic protein-2 and mesenchymal stem cells delivered in fibrin glue.
    Liu Z; Zhu Y; Zhu H; He X; Liu X
    J Biomater Appl; 2016 Oct; 31(4):477-487. PubMed ID: 27059496
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Preparation and properties of dopamine-modified alginate/chitosan-hydroxyapatite scaffolds with gradient structure for bone tissue engineering.
    Shi D; Shen J; Zhang Z; Shi C; Chen M; Gu Y; Liu Y
    J Biomed Mater Res A; 2019 Aug; 107(8):1615-1627. PubMed ID: 30920134
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evaluation of a new formulation of demineralized bone matrix putty in a rabbit posterolateral spinal fusion model.
    Kiely PD; Brecevich AT; Taher F; Nguyen JT; Cammisa FP; Abjornson C
    Spine J; 2014 Sep; 14(9):2155-63. PubMed ID: 24512696
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Experimental posterolateral lumbar spinal fusion with a demineralized bone matrix gel.
    Morone MA; Boden SD
    Spine (Phila Pa 1976); 1998 Jan; 23(2):159-67. PubMed ID: 9474720
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Posterolateral spinal fusion with nano-hydroxyapatite-collagen/PLA composite and autologous adipose-derived mesenchymal stem cells in a rabbit model.
    Tang ZB; Cao JK; Wen N; Wang HB; Zhang ZW; Liu ZQ; Zhou J; Duan CM; Cui FZ; Wang CY
    J Tissue Eng Regen Med; 2012 Apr; 6(4):325-36. PubMed ID: 21751422
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Composite chitosan/nano-hydroxyapatite scaffolds induce osteocalcin production by osteoblasts in vitro and support bone formation in vivo.
    Chesnutt BM; Yuan Y; Buddington K; Haggard WO; Bumgardner JD
    Tissue Eng Part A; 2009 Sep; 15(9):2571-9. PubMed ID: 19309240
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Motion Analysis in Lumbar Spinal Stenosis With Degenerative Spondylolisthesis: A Feasibility Study of the 3DCT Technique Comparing Laminectomy Versus Bilateral Laminotomy.
    Försth P; Svedmark P; Noz ME; Maguire GQ; Zeleznik MP; Sandén B
    Clin Spine Surg; 2018 Oct; 31(8):E397-E402. PubMed ID: 29939843
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enhanced spinal fusion using a biodegradable porous mesh container in a rat posterolateral spinal fusion model.
    Shin DA; Yang BM; Tae G; Kim YH; Kim HS; Kim HI
    Spine J; 2014 Mar; 14(3):408-15. PubMed ID: 24268394
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evaluation of carriers of bone morphogenetic protein for spinal fusion.
    Minamide A; Kawakami M; Hashizume H; Sakata R; Tamaki T
    Spine (Phila Pa 1976); 2001 Apr; 26(8):933-9. PubMed ID: 11317116
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The effects of magnesium particles in posterolateral spinal fusion: an experimental in vivo study in a sheep model.
    Kaya RA; Cavuşoğlu H; Tanik C; Kaya AA; Duygulu O; Mutlu Z; Zengin E; Aydin Y
    J Neurosurg Spine; 2007 Feb; 6(2):141-9. PubMed ID: 17330581
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.