BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 31679409)

  • 1. Automated method for detecting and reading seven-segment digits from images of blood glucose metres and blood pressure monitors.
    Finnegan E; Villarroel M; Velardo C; Tarassenko L
    J Med Eng Technol; 2019 Aug; 43(6):341-355. PubMed ID: 31679409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Utilizing Smartphone-Based Machine Learning in Medical Monitor Data Collection: Seven Segment Digit Recognition.
    Shenoy VN; Aalami OO
    AMIA Annu Symp Proc; 2017; 2017():1564-1570. PubMed ID: 29854226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward automated severe pharyngitis detection with smartphone camera using deep learning networks.
    Yoo TK; Choi JY; Jang Y; Oh E; Ryu IH
    Comput Biol Med; 2020 Oct; 125():103980. PubMed ID: 32871294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detecting Cataract Using Smartphones.
    Askarian B; Ho P; Chong JW
    IEEE J Transl Eng Health Med; 2021; 9():3800110. PubMed ID: 34786216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the diagnostic accuracy of four smartphone-compatible blood pressure monitors in post-myocardial infarction patients.
    Treskes RW; Wolterbeek R; van der Velde ET; Eindhoven DC; Schalij MJ
    J Telemed Telecare; 2018 Jul; 24(6):404-409. PubMed ID: 28457182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection and segmentation of virus plaque using HOG and SVM: toward automatic plaque assay.
    Mao Y; Liu H; Ye R; Shi Y; Song Z
    Biomed Mater Eng; 2014; 24(6):3187-98. PubMed ID: 25227027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparing smartphone camera adapters in imaging post-operative cataract patients.
    Sanguansak T; Morley K; Morley M; Kusakul S; Lee R; Shieh E; Yospaiboon Y; Bhoomibunchoo C; Chai-Ear S; Joseph A; Agarwal I
    J Telemed Telecare; 2017 Jan; 23(1):36-43. PubMed ID: 26851243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coronary artery centerline extraction in cardiac CT angiography using a CNN-based orientation classifier.
    Wolterink JM; van Hamersvelt RW; Viergever MA; Leiner T; Išgum I
    Med Image Anal; 2019 Jan; 51():46-60. PubMed ID: 30388501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Web-Based Smartphone Algorithm for Calculating Blood Pressure From Photoplethysmography Remotely in a General Adult Population: Validation Study.
    Holyoke P; Yogaratnam K; Kalles E
    J Med Internet Res; 2021 Apr; 23(4):e19187. PubMed ID: 33890856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Digit and command interpretation for electronic book using neural network and genetic algorithm.
    Lam HK; Leung FH
    IEEE Trans Syst Man Cybern B Cybern; 2004 Dec; 34(6):2273-83. PubMed ID: 15619928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel end-to-end classifier using domain transferred deep convolutional neural networks for biomedical images.
    Pang S; Yu Z; Orgun MA
    Comput Methods Programs Biomed; 2017 Mar; 140():283-293. PubMed ID: 28254085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scene text detection via connected component clustering and nontext filtering.
    Koo HI; Kim DH
    IEEE Trans Image Process; 2013 Jun; 22(6):2296-305. PubMed ID: 23475363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic Focus Assessment on Dermoscopic Images Acquired with Smartphones.
    Alves J; Moreira D; Alves P; Rosado L; Vasconcelos MJM
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31739464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Segmentation of lung parenchyma in CT images using CNN trained with the clustering algorithm generated dataset.
    Xu M; Qi S; Yue Y; Teng Y; Xu L; Yao Y; Qian W
    Biomed Eng Online; 2019 Jan; 18(1):2. PubMed ID: 30602393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A semi-automated image analysis procedure for in situ plankton imaging systems.
    Bi H; Guo Z; Benfield MC; Fan C; Ford M; Shahrestani S; Sieracki JM
    PLoS One; 2015; 10(5):e0127121. PubMed ID: 26010260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and Clinical Evaluation of the Interoperable Artificial Pancreas System (iAPS) Smartphone App: Interoperable Components with Modular Design for Progressive Artificial Pancreas Research and Development.
    Deshpande S; Pinsker JE; Zavitsanou S; Shi D; Tompot R; Church MM; Andre C; Doyle FJ; Dassau E
    Diabetes Technol Ther; 2019 Jan; 21(1):35-43. PubMed ID: 30547670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of acute lymphoblastic leukemia using image segmentation and data mining algorithms.
    Acharya V; Kumar P
    Med Biol Eng Comput; 2019 Aug; 57(8):1783-1811. PubMed ID: 31201595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kankanet: An artificial neural network-based object detection smartphone application and mobile microscope as a point-of-care diagnostic aid for soil-transmitted helminthiases.
    Yang A; Bakhtari N; Langdon-Embry L; Redwood E; Grandjean Lapierre S; Rakotomanga P; Rafalimanantsoa A; De Dios Santos J; Vigan-Womas I; Knoblauch AM; Marcos LA
    PLoS Negl Trop Dis; 2019 Aug; 13(8):e0007577. PubMed ID: 31381573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated integrated system for stained neuron detection: An end-to-end framework with a high negative predictive rate.
    Yoon JS; Choi EY; Saad M; Choi TS
    Comput Methods Programs Biomed; 2019 Oct; 180():105028. PubMed ID: 31437805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ways to increase precision and accuracy of wound area measurement using smart devices: Advanced app Planimator.
    Foltynski P
    PLoS One; 2018; 13(3):e0192485. PubMed ID: 29505569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.