These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 31679757)

  • 21. Mitigating Cybersickness in Virtual Reality Systems through Foveated Depth-of-Field Blur.
    Hussain R; Chessa M; Solari F
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34200616
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparing virtual reality, desktop-based 3D, and 2D versions of a category learning experiment.
    Barrett RCA; Poe R; O'Camb JW; Woodruff C; Harrison SM; Dolguikh K; Chuong C; Klassen AD; Zhang R; Joseph RB; Blair MR
    PLoS One; 2022; 17(10):e0275119. PubMed ID: 36201546
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Clinical Effect of Virtual Reality Technology on Rehabilitation Training of Sports Injury.
    Chen J
    J Healthc Eng; 2021; 2021():1361851. PubMed ID: 34671447
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Eye-Tracking for Clinical Ophthalmology with Virtual Reality (VR): A Case Study of the HTC Vive Pro Eye's Usability.
    Sipatchin A; Wahl S; Rifai K
    Healthcare (Basel); 2021 Feb; 9(2):. PubMed ID: 33572072
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Let's get it started: Eye Tracking in VR with the Pupil Labs Eye Tracking Add-On for the HTC Vive.
    Josupeit J
    J Eye Mov Res; 2022; 15(3):. PubMed ID: 39139654
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multiuser virtual reality environment for visualising neuroimaging data.
    Shattuck DW
    Healthc Technol Lett; 2018 Oct; 5(5):183-188. PubMed ID: 30464851
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Examining the effects of altered avatars on perception-action in virtual reality.
    Day B; Ebrahimi E; Hartman LS; Pagano CC; Robb AC; Babu SV
    J Exp Psychol Appl; 2019 Mar; 25(1):1-24. PubMed ID: 30346194
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reaching in Several Realities: Motor and Cognitive Benefits of Different Visualization Technologies.
    Wenk N; Penalver-Andres J; Palma R; Buetler KA; Muri R; Nef T; Marchal-Crespo L
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():1037-1042. PubMed ID: 31374766
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficacy of virtual reality in pedestrian safety research.
    Deb S; Carruth DW; Sween R; Strawderman L; Garrison TM
    Appl Ergon; 2017 Nov; 65():449-460. PubMed ID: 28318502
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluating the Accuracy of Virtual Reality Trackers for Computing Spatiotemporal Gait Parameters.
    Guaitolini M; Petros FE; Prado A; Sabatini AM; Agrawal SK
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34064807
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Journey to the centre of the cell: Virtual reality immersion into scientific data.
    Johnston APR; Rae J; Ariotti N; Bailey B; Lilja A; Webb R; Ferguson C; Maher S; Davis TP; Webb RI; McGhee J; Parton RG
    Traffic; 2018 Feb; 19(2):105-110. PubMed ID: 29159991
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantification and Rehabilitation of Unilateral Spatial Neglect in Immersive Virtual Reality: A Validation Study in Healthy Subjects.
    Faity G; Sidahmed Y; Laffont I; Froger J
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050541
    [TBL] [Abstract][Full Text] [Related]  

  • 33. VR-Based Job Training System Using Tangible Interactions.
    Baek S; Gil YH; Kim Y
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34696004
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impact of Socio-Demographic Attributes and Mutual Gaze of Virtual Humans on Users' Visual Attention and Collision Avoidance in VR.
    Huang WC; Wong SK; Volonte M; Babu SV
    IEEE Trans Vis Comput Graph; 2024 Sep; 30(9):6146-6163. PubMed ID: 37917527
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Restoring movement representation and alleviating phantom limb pain through short-term neurorehabilitation with a virtual reality system.
    Osumi M; Ichinose A; Sumitani M; Wake N; Sano Y; Yozu A; Kumagaya S; Kuniyoshi Y; Morioka S
    Eur J Pain; 2017 Jan; 21(1):140-147. PubMed ID: 27378656
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Digital restoration of fragmentary human skeletal remains: Testing the feasibility of virtual reality.
    Jurda M; Urbanová P; Chmelík J
    J Forensic Leg Med; 2019 Aug; 66():50-57. PubMed ID: 31220789
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Flexible Virtual Reality System for Neurorehabilitation and Quality of Life Improvement.
    Stanica IC; Moldoveanu F; Portelli GP; Dascalu MI; Moldoveanu A; Ristea MG
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33114272
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Accuracy Investigation of the Pose Determination of a VR System.
    Bauer P; Lienhart W; Jost S
    Sensors (Basel); 2021 Feb; 21(5):. PubMed ID: 33669148
    [TBL] [Abstract][Full Text] [Related]  

  • 39. AR in VR: assessing surgical augmented reality visualizations in a steerable virtual reality environment.
    Hettig J; Engelhardt S; Hansen C; Mistelbauer G
    Int J Comput Assist Radiol Surg; 2018 Nov; 13(11):1717-1725. PubMed ID: 30043197
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of a data management tool for investigating multivariate space and free will experiences in virtual reality.
    Morie JF; Iyer K; Luigi DP; Williams J; Dozois A; Rizzo AS
    Appl Psychophysiol Biofeedback; 2005 Sep; 30(3):319-31. PubMed ID: 16167194
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.