These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 31679858)

  • 1. An Ancient CFTR Ortholog Informs Molecular Evolution in ABC Transporters.
    Cui G; Hong J; Chung-Davidson YW; Infield D; Xu X; Li J; Simhaev L; Khazanov N; Stauffer B; Imhoff B; Cottrill K; Blalock JE; Li W; Senderowitz H; Sorscher E; McCarty NA; Gaggar A
    Dev Cell; 2019 Nov; 51(4):421-430.e3. PubMed ID: 31679858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary and functional divergence between the cystic fibrosis transmembrane conductance regulator and related ATP-binding cassette transporters.
    Jordan IK; Kota KC; Cui G; Thompson CH; McCarty NA
    Proc Natl Acad Sci U S A; 2008 Dec; 105(48):18865-70. PubMed ID: 19020075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The CFTR ion channel: gating, regulation, and anion permeation.
    Hwang TC; Kirk KL
    Cold Spring Harb Perspect Med; 2013 Jan; 3(1):a009498. PubMed ID: 23284076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploiting species differences to understand the CFTR Cl- channel.
    Bose SJ; Scott-Ward TS; Cai Z; Sheppard DN
    Biochem Soc Trans; 2015 Oct; 43(5):975-82. PubMed ID: 26517912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ABC protein turned chloride channel whose failure causes cystic fibrosis.
    Gadsby DC; Vergani P; Csanády L
    Nature; 2006 Mar; 440(7083):477-83. PubMed ID: 16554808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutating the Conserved Q-loop Glutamine 1291 Selectively Disrupts Adenylate Kinase-dependent Channel Gating of the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and Reduces Channel Function in Primary Human Airway Epithelia.
    Dong Q; Ernst SE; Ostedgaard LS; Shah VS; Ver Heul AR; Welsh MJ; Randak CO
    J Biol Chem; 2015 May; 290(22):14140-53. PubMed ID: 25887396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The two ATP binding sites of cystic fibrosis transmembrane conductance regulator (CFTR) play distinct roles in gating kinetics and energetics.
    Zhou Z; Wang X; Liu HY; Zou X; Li M; Hwang TC
    J Gen Physiol; 2006 Oct; 128(4):413-22. PubMed ID: 16966475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cystic fibrosis transmembrane conductance regulator (CFTR): Making an ion channel out of an active transporter structure.
    Linsdell P
    Channels (Austin); 2018; 12(1):284-290. PubMed ID: 30152709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and function of the CFTR chloride channel.
    Sheppard DN; Welsh MJ
    Physiol Rev; 1999 Jan; 79(1 Suppl):S23-45. PubMed ID: 9922375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrodiffusional ATP movement through CFTR and other ABC transporters.
    Cantiello HF
    Pflugers Arch; 2001; 443 Suppl 1():S22-7. PubMed ID: 11845298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional stability of CFTR depends on tight binding of ATP at its degenerate ATP-binding site.
    Yeh HI; Yu YC; Kuo PL; Tsai CK; Huang HT; Hwang TC
    J Physiol; 2021 Oct; 599(20):4625-4642. PubMed ID: 34411298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Channel Gating Regulation by the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) First Cytosolic Loop.
    Ehrhardt A; Chung WJ; Pyle LC; Wang W; Nowotarski K; Mulvihill CM; Ramjeesingh M; Hong J; Velu SE; Lewis HA; Atwell S; Aller S; Bear CE; Lukacs GL; Kirk KL; Sorscher EJ
    J Biol Chem; 2016 Jan; 291(4):1854-1865. PubMed ID: 26627831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A unified view of cystic fibrosis transmembrane conductance regulator (CFTR) gating: combining the allosterism of a ligand-gated channel with the enzymatic activity of an ATP-binding cassette (ABC) transporter.
    Kirk KL; Wang W
    J Biol Chem; 2011 Apr; 286(15):12813-9. PubMed ID: 21296873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning from each other: ABC transporter regulation by protein phosphorylation in plant and mammalian systems.
    Aryal B; Laurent C; Geisler M
    Biochem Soc Trans; 2015 Oct; 43(5):966-74. PubMed ID: 26517911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational Changes of CFTR upon Phosphorylation and ATP Binding.
    Zhang Z; Liu F; Chen J
    Cell; 2017 Jul; 170(3):483-491.e8. PubMed ID: 28735752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The molecular evolution of function in the CFTR chloride channel.
    Infield DT; Strickland KM; Gaggar A; McCarty NA
    J Gen Physiol; 2021 Dec; 153(12):. PubMed ID: 34647973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential function of the two nucleotide binding domains on cystic fibrosis transmembrane conductance regulator.
    Nagel G
    Biochim Biophys Acta; 1999 Dec; 1461(2):263-74. PubMed ID: 10581360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Origin and evolution of the cystic fibrosis transmembrane regulator protein R domain.
    Sebastian A; Rishishwar L; Wang J; Bernard KF; Conley AB; McCarty NA; Jordan IK
    Gene; 2013 Jul; 523(2):137-46. PubMed ID: 23578801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Structure of the Human CFTR Ion Channel.
    Liu F; Zhang Z; Csanády L; Gadsby DC; Chen J
    Cell; 2017 Mar; 169(1):85-95.e8. PubMed ID: 28340353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the localization of STE6/CFTR chimeras in a Saccharomyces cerevisiae model for the cystic fibrosis defect CFTR delta F508.
    Paddon C; Loayza D; Vangelista L; Solari R; Michaelis S
    Mol Microbiol; 1996 Mar; 19(5):1007-17. PubMed ID: 8830258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.