BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 31679878)

  • 1. Application of solid waste of ductile cast iron industry for treatment of wastewater contaminated by reactive blue dye via appropriate nano-porous magnesium oxide.
    Pourrahim S; Salem A; Salem S; Tavangar R
    Environ Pollut; 2020 Jan; 256():113454. PubMed ID: 31679878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly Efficient and Sustainable Spent Mushroom Waste Adsorbent Based on Surfactant Modification for the Removal of Toxic Dyes.
    Alhujaily A; Yu H; Zhang X; Ma F
    Int J Environ Res Public Health; 2018 Jul; 15(7):. PubMed ID: 29976904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Textile dye degradation using nano zero valent iron: A review.
    Raman CD; Kanmani S
    J Environ Manage; 2016 Jul; 177():341-55. PubMed ID: 27115482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Turning calcium carbonate into a cost-effective wastewater-sorbing material by occluding waste dye.
    Zhao DH; Gao HW
    Environ Sci Pollut Res Int; 2010 Jan; 17(1):97-105. PubMed ID: 19263103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conversion of tannery solid waste to an adsorbent for high-efficiency dye removal from tannery wastewater: A road to circular utilization.
    Tang Y; Zhao J; Zhang Y; Zhou J; Shi B
    Chemosphere; 2021 Jan; 263():127987. PubMed ID: 32835980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of Mg/Al layered double hydroxide for color removal of textile wastewater.
    Hussein MZ; Zainal Z; Yaziz I; Beng TC
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2001; 36(4):565-73. PubMed ID: 11413839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectrophotometrical analysis for fabrication of pH-independent nano-sized γ-alumina by dealumination of kaolin and precipitation in the presence of surfactant composites.
    Ferdowsi S; Salem A; Salem S
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jul; 218():109-118. PubMed ID: 30959342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Color removal from dye-containing wastewater by magnesium chloride.
    Gao BY; Yue QY; Wang Y; Zhou WZ
    J Environ Manage; 2007 Jan; 82(2):167-72. PubMed ID: 16618529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of azo and anthraquinone reactive dyes from industrial wastewaters using MgO nanoparticles.
    Moussavi G; Mahmoudi M
    J Hazard Mater; 2009 Sep; 168(2-3):806-12. PubMed ID: 19303210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A green approach for the treatment of dye and surfactant contaminated industrial wastewater.
    Gül ÜD
    Braz J Biol; 2020 Sep; 80(3):615-620. PubMed ID: 31644655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption studies on the removal of Vertigo Blue 49 and Orange DNA13 from aqueous solutions using carbon slurry developed from a waste material.
    Gupta VK; Ali I; Saini VK
    J Colloid Interface Sci; 2007 Nov; 315(1):87-93. PubMed ID: 17689548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of cationic dyes from aqueous solutions using microspherical particles of fly ash.
    Witek-Krowiak A; Szafran RG; Modelski S; Dawiec A
    Water Environ Res; 2012 Feb; 84(2):162-9. PubMed ID: 22515067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regeneration of wastewater contaminated by cationic dye by nanoporous activated carbon produced from agriculture waste shells.
    Teimouri Z; Salem A; Salem S
    Environ Sci Pollut Res Int; 2019 Mar; 26(8):7718-7729. PubMed ID: 30666581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coal-based bottom ash (CBBA) waste material as adsorbent for removal of textile dyestuffs from aqueous solution.
    Dinçer AR; Güneş Y; Karakaya N
    J Hazard Mater; 2007 Mar; 141(3):529-35. PubMed ID: 16978765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acidified groundnut cake for enhanced bio adsorption of anionic textile dye Reactive Red 195.
    Jayan A; Nizam A; Nagella P; Veerappa Lakshmaiah V
    Int J Phytoremediation; 2024 Jun; 26(8):1231-1242. PubMed ID: 38279798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A study of Reactive Red 198 adsorption on iron filings from aqueous solutions.
    Azhdarpoor A; Nikmanesh R; Khademi F
    Environ Technol; 2014; 35(21-24):2956-60. PubMed ID: 25189843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization and application of poly-ferric-titanium-silicate-sulfate in disperse and reactive dye wastewaters treatment.
    Huang X; Wan Y; Shi B; Shi J; Chen H; Liang H
    Chemosphere; 2020 Jun; 249():126129. PubMed ID: 32062210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of anionic surfactant sodium dodecyl benzene sulfonate (SDBS) from wastewaters by zero-valent iron (ZVI): predominant removal mechanism for effective SDBS removal.
    Takayanagi A; Kobayashi M; Kawase Y
    Environ Sci Pollut Res Int; 2017 Mar; 24(9):8087-8097. PubMed ID: 28138885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Some properties of a granular activated carbon-sequencing batch reactor (GAC-SBR) system for treatment of textile wastewater containing direct dyes.
    Sirianuntapiboon S; Sadahiro O; Salee P
    J Environ Manage; 2007 Oct; 85(1):162-70. PubMed ID: 17046148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Green synthesis of palm oil mill effluent-based graphenic adsorbent for the treatment of dye-contaminated wastewater.
    Teow YH; Nordin NI; Mohammad AW
    Environ Sci Pollut Res Int; 2019 Nov; 26(33):33747-33757. PubMed ID: 29754300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.