These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 31680135)

  • 1. An evaluation of some assumptions underpinning the bidomain equations of electrophysiology.
    Whiteley JP
    Math Med Biol; 2020 May; 37(2):262-302. PubMed ID: 31680135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling the effect of gap junctions on tissue-level cardiac electrophysiology.
    Bruce D; Pathmanathan P; Whiteley JP
    Bull Math Biol; 2014 Feb; 76(2):431-54. PubMed ID: 24338526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling for cardiac excitation propagation based on the Nernst-Planck equation and homogenization.
    Okada J; Sugiura S; Hisada T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062701. PubMed ID: 23848709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Forward Euler stability of the bidomain model of cardiac tissue.
    Puwal S; Roth BJ
    IEEE Trans Biomed Eng; 2007 May; 54(5):951-3. PubMed ID: 17518295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Representation of Multiple Cellular Phenotypes Within Tissue-Level Simulations of Cardiac Electrophysiology.
    Bowler LA; Gavaghan DJ; Mirams GR; Whiteley JP
    Bull Math Biol; 2019 Jan; 81(1):7-38. PubMed ID: 30291590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of spectral methods in bidomain studies.
    Trayanova N; Pilkington T
    Crit Rev Biomed Eng; 1992; 20(3-4):255-77. PubMed ID: 1478093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulating the electrical behavior of cardiac tissue using the bidomain model.
    Henriquez CS
    Crit Rev Biomed Eng; 1993; 21(1):1-77. PubMed ID: 8365198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the computational complexity of the bidomain and the monodomain models of electrophysiology.
    Sundnes J; Nielsen BF; Mardal KA; Cai X; Lines GT; Tveito A
    Ann Biomed Eng; 2006 Jul; 34(7):1088-97. PubMed ID: 16773461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of the bidomain conductivity parameters of cardiac tissue from extracellular potential distributions initiated by point stimulation.
    Graham LS; Kilpatrick D
    Ann Biomed Eng; 2010 Dec; 38(12):3630-48. PubMed ID: 20628818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Liquid junction potentials calculated from numerical solutions of the Nernst-Planck and Poisson equations.
    Riveros OJ; Croxton TL; Armstrong WM
    J Theor Biol; 1989 Sep; 140(2):221-30. PubMed ID: 2482392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Current injection into a two-dimensional anisotropic bidomain.
    Sepulveda NG; Roth BJ; Wikswo JP
    Biophys J; 1989 May; 55(5):987-99. PubMed ID: 2720084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discrete versus syncytial tissue behavior in a model of cardiac stimulation--I: Mathematical formulation.
    Trayanova N
    IEEE Trans Biomed Eng; 1996 Dec; 43(12):1129-40. PubMed ID: 9214832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A numerical method for cardiac mechanoelectric simulations.
    Pathmanathan P; Whiteley JP
    Ann Biomed Eng; 2009 May; 37(5):860-73. PubMed ID: 19263223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An operator splitting method for solving the bidomain equations coupled to a volume conductor model for the torso.
    Sundnes J; Lines GT; Tveito A
    Math Biosci; 2005 Apr; 194(2):233-48. PubMed ID: 15854678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deriving macroscopic myocardial conductivities by homogenization of microscopic models.
    Hand PE; Griffith BE; Peskin CS
    Bull Math Biol; 2009 Oct; 71(7):1707-26. PubMed ID: 19412638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soft tissue modelling of cardiac fibres for use in coupled mechano-electric simulations.
    Whiteley JP; Bishop MJ; Gavaghan DJ
    Bull Math Biol; 2007 Oct; 69(7):2199-225. PubMed ID: 17453303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A two layers monodomain model of cardiac electrophysiology of the atria.
    Coudière Y; Henry J; Labarthe S
    J Math Biol; 2015 Dec; 71(6-7):1607-41. PubMed ID: 25773466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A bidomain model with periodic intracellular junctions: a one-dimensional analysis.
    Trayanova N; Pilkington TC
    IEEE Trans Biomed Eng; 1993 May; 40(5):424-33. PubMed ID: 8225331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulating Cardiac Electrophysiology Using Unstructured All-Hexahedra Spectral Elements.
    Cuccuru G; Fotia G; Maggio F; Southern J
    Biomed Res Int; 2015; 2015():473279. PubMed ID: 26583112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational techniques for solving the bidomain equations in three dimensions.
    Vigmond EJ; Aguel F; Trayanova NA
    IEEE Trans Biomed Eng; 2002 Nov; 49(11):1260-9. PubMed ID: 12450356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.