BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 31680168)

  • 1. TSEA-DB: a trait-tissue association map for human complex traits and diseases.
    Jia P; Dai Y; Hu R; Pei G; Manuel AM; Zhao Z
    Nucleic Acids Res; 2020 Jan; 48(D1):D1022-D1030. PubMed ID: 31680168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CSEA-DB: an omnibus for human complex trait and cell type associations.
    Dai Y; Hu R; Manuel AM; Liu A; Jia P; Zhao Z
    Nucleic Acids Res; 2021 Jan; 49(D1):D862-D870. PubMed ID: 33211888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pinpointing miRNA and genes enrichment over trait-relevant tissue network in Genome-Wide Association Studies.
    Li B; Dong J; Yu J; Fan Y; Shang L; Zhou X; Bai Y
    BMC Med Genomics; 2020 Dec; 13(Suppl 11):191. PubMed ID: 33371893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GWAS Atlas: a curated resource of genome-wide variant-trait associations in plants and animals.
    Tian D; Wang P; Tang B; Teng X; Li C; Liu X; Zou D; Song S; Zhang Z
    Nucleic Acids Res; 2020 Jan; 48(D1):D927-D932. PubMed ID: 31566222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimating colocalization probability from limited summary statistics.
    King EA; Dunbar F; Davis JW; Degner JF
    BMC Bioinformatics; 2021 May; 22(1):254. PubMed ID: 34000989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of multi-trait associations using pathway-based analysis of GWAS summary statistics.
    Pei G; Sun H; Dai Y; Liu X; Zhao Z; Jia P
    BMC Genomics; 2019 Feb; 20(Suppl 1):79. PubMed ID: 30712509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of tissue context on gene prioritization for predicted transcriptome-wide association studies.
    Li B; Veturi Y; Bradford Y; Verma SS; Verma A; Lucas AM; Haas DW; Ritchie MD
    Pac Symp Biocomput; 2019; 24():296-307. PubMed ID: 30864331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ncRNA-eQTL: a database to systematically evaluate the effects of SNPs on non-coding RNA expression across cancer types.
    Li J; Xue Y; Amin MT; Yang Y; Yang J; Zhang W; Yang W; Niu X; Zhang HY; Gong J
    Nucleic Acids Res; 2020 Jan; 48(D1):D956-D963. PubMed ID: 31410488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An integrative functional genomics framework for effective identification of novel regulatory variants in genome-phenome studies.
    Zhao J; Cheng F; Jia P; Cox N; Denny JC; Zhao Z
    Genome Med; 2018 Jan; 10(1):7. PubMed ID: 29378629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimating the causal tissues for complex traits and diseases.
    Ongen H; Brown AA; Delaneau O; Panousis NI; Nica AC; ; Dermitzakis ET
    Nat Genet; 2017 Dec; 49(12):1676-1683. PubMed ID: 29058715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Joint Bayesian inference of risk variants and tissue-specific epigenomic enrichments across multiple complex human diseases.
    Li Y; Kellis M
    Nucleic Acids Res; 2016 Oct; 44(18):e144. PubMed ID: 27407109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inferring the Nature of Missing Heritability in Human Traits Using Data from the GWAS Catalog.
    López-Cortegano E; Caballero A
    Genetics; 2019 Jul; 212(3):891-904. PubMed ID: 31123044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3'aQTL-atlas: an atlas of 3'UTR alternative polyadenylation quantitative trait loci across human normal tissues.
    Cui Y; Peng F; Wang D; Li Y; Li JS; Li L; Li W
    Nucleic Acids Res; 2022 Jan; 50(D1):D39-D45. PubMed ID: 34432052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting gene targets from integrative analyses of summary data from GWAS and eQTL studies for 28 human complex traits.
    Pavlides JM; Zhu Z; Gratten J; McRae AF; Wray NR; Yang J
    Genome Med; 2016 Aug; 8(1):84. PubMed ID: 27506385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probabilistic integration of transcriptome-wide association studies and colocalization analysis identifies key molecular pathways of complex traits.
    Okamoto J; Wang L; Yin X; Luca F; Pique-Regi R; Helms A; Im HK; Morrison J; Wen X
    Am J Hum Genet; 2023 Jan; 110(1):44-57. PubMed ID: 36608684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. webTWAS: a resource for disease candidate susceptibility genes identified by transcriptome-wide association study.
    Cao C; Wang J; Kwok D; Cui F; Zhang Z; Zhao D; Li MJ; Zou Q
    Nucleic Acids Res; 2022 Jan; 50(D1):D1123-D1130. PubMed ID: 34669946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CAUSALdb: a database for disease/trait causal variants identified using summary statistics of genome-wide association studies.
    Wang J; Huang D; Zhou Y; Yao H; Liu H; Zhai S; Wu C; Zheng Z; Zhao K; Wang Z; Yi X; Zhang S; Liu X; Liu Z; Chen K; Yu Y; Sham PC; Li MJ
    Nucleic Acids Res; 2020 Jan; 48(D1):D807-D816. PubMed ID: 31691819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. QTLbase: an integrative resource for quantitative trait loci across multiple human molecular phenotypes.
    Zheng Z; Huang D; Wang J; Zhao K; Zhou Y; Guo Z; Zhai S; Xu H; Cui H; Yao H; Wang Z; Yi X; Zhang S; Sham PC; Li MJ
    Nucleic Acids Res; 2020 Jan; 48(D1):D983-D991. PubMed ID: 31598699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. deTS: tissue-specific enrichment analysis to decode tissue specificity.
    Pei G; Dai Y; Zhao Z; Jia P
    Bioinformatics; 2019 Oct; 35(19):3842-3845. PubMed ID: 30824912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Beavis Effect in Next-Generation Mapping Panels in
    King EG; Long AD
    G3 (Bethesda); 2017 Jun; 7(6):1643-1652. PubMed ID: 28592647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.