These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 31680191)
1. The role of acetylation sites in the regulation of p53 activity. Wang Y; Chen Y; Chen Q; Zhang X; Wang H; Wang Z; Wang J; Tian C Mol Biol Rep; 2020 Jan; 47(1):381-391. PubMed ID: 31680191 [TBL] [Abstract][Full Text] [Related]
2. Distinct p53 acetylation cassettes differentially influence gene-expression patterns and cell fate. Knights CD; Catania J; Di Giovanni S; Muratoglu S; Perez R; Swartzbeck A; Quong AA; Zhang X; Beerman T; Pestell RG; Avantaggiati ML J Cell Biol; 2006 May; 173(4):533-44. PubMed ID: 16717128 [TBL] [Abstract][Full Text] [Related]
3. Acetylation of p53 at lysine 373/382 by the histone deacetylase inhibitor depsipeptide induces expression of p21(Waf1/Cip1). Zhao Y; Lu S; Wu L; Chai G; Wang H; Chen Y; Sun J; Yu Y; Zhou W; Zheng Q; Wu M; Otterson GA; Zhu WG Mol Cell Biol; 2006 Apr; 26(7):2782-90. PubMed ID: 16537920 [TBL] [Abstract][Full Text] [Related]
4. Functional analysis of the roles of posttranslational modifications at the p53 C terminus in regulating p53 stability and activity. Feng L; Lin T; Uranishi H; Gu W; Xu Y Mol Cell Biol; 2005 Jul; 25(13):5389-95. PubMed ID: 15964796 [TBL] [Abstract][Full Text] [Related]
5. p53 Oligomerization is essential for its C-terminal lysine acetylation. Itahana Y; Ke H; Zhang Y J Biol Chem; 2009 Feb; 284(8):5158-64. PubMed ID: 19106109 [TBL] [Abstract][Full Text] [Related]
6. Methylation-acetylation interplay activates p53 in response to DNA damage. Ivanov GS; Ivanova T; Kurash J; Ivanov A; Chuikov S; Gizatullin F; Herrera-Medina EM; Rauscher F; Reinberg D; Barlev NA Mol Cell Biol; 2007 Oct; 27(19):6756-69. PubMed ID: 17646389 [TBL] [Abstract][Full Text] [Related]
7. Acetylation is indispensable for p53 antiviral activity. Muñoz-Fontela C; González D; Marcos-Villar L; Campagna M; Gallego P; González-Santamaría J; Herranz D; Gu W; Serrano M; Aaronson SA; Rivas C Cell Cycle; 2011 Nov; 10(21):3701-5. PubMed ID: 22033337 [TBL] [Abstract][Full Text] [Related]
9. PBRM1 acts as a p53 lysine-acetylation reader to suppress renal tumor growth. Cai W; Su L; Liao L; Liu ZZ; Langbein L; Dulaimi E; Testa JR; Uzzo RG; Zhong Z; Jiang W; Yan Q; Zhang Q; Yang H Nat Commun; 2019 Dec; 10(1):5800. PubMed ID: 31863007 [TBL] [Abstract][Full Text] [Related]
10. Post-translational modifications of p53 tumor suppressor: determinants of its functional targets. Taira N; Yoshida K Histol Histopathol; 2012 Apr; 27(4):437-43. PubMed ID: 22374721 [TBL] [Abstract][Full Text] [Related]
11. Redox modulation of p53: mechanisms and functional significance. Kim DH; Kundu JK; Surh YJ Mol Carcinog; 2011 Apr; 50(4):222-34. PubMed ID: 21465572 [TBL] [Abstract][Full Text] [Related]
12. Regulation of p53 by reversible post-transcriptional and post-translational mechanisms in liver and skeletal muscle of an anoxia tolerant turtle, Trachemys scripta elegans. Zhang J; Biggar KK; Storey KB Gene; 2013 Jan; 513(1):147-55. PubMed ID: 23124036 [TBL] [Abstract][Full Text] [Related]
13. ID4 regulates transcriptional activity of wild type and mutant p53 via K373 acetylation. Morton DJ; Patel D; Joshi J; Hunt A; Knowell AE; Chaudhary J Oncotarget; 2017 Jan; 8(2):2536-2549. PubMed ID: 27911860 [TBL] [Abstract][Full Text] [Related]
14. Deciphering the acetylation code of p53 in transcription regulation and tumor suppression. Xia Z; Kon N; Gu AP; Tavana O; Gu W Oncogene; 2022 May; 41(22):3039-3050. PubMed ID: 35487975 [TBL] [Abstract][Full Text] [Related]
15. Functional analysis of the acetylation of human p53 in DNA damage responses. Chung SK; Zhu S; Xu Y; Fu X Protein Cell; 2014 Jul; 5(7):544-51. PubMed ID: 24691905 [TBL] [Abstract][Full Text] [Related]
16. ING1 represses transcription by direct DNA binding and through effects on p53. Kataoka H; Bonnefin P; Vieyra D; Feng X; Hara Y; Miura Y; Joh T; Nakabayashi H; Vaziri H; Harris CC; Riabowol K Cancer Res; 2003 Sep; 63(18):5785-92. PubMed ID: 14522900 [TBL] [Abstract][Full Text] [Related]
17. Robust p53 Stabilization Is Dispensable for Its Activation and Tumor Suppressor Function. Kon N; Churchill M; Li H; Mukherjee S; Manfredi JJ; Gu W Cancer Res; 2021 Feb; 81(4):935-944. PubMed ID: 33323382 [TBL] [Abstract][Full Text] [Related]
18. Mechanisms of p53 activation and physiological relevance in the developing kidney. Aboudehen K; Hilliard S; Saifudeen Z; El-Dahr SS Am J Physiol Renal Physiol; 2012 Apr; 302(8):F928-40. PubMed ID: 22237799 [TBL] [Abstract][Full Text] [Related]
19. Lysines in the tetramerization domain of p53 selectively modulate G1 arrest. Beckerman R; Yoh K; Mattia-Sansobrino M; Zupnick A; Laptenko O; Karni-Schmidt O; Ahn J; Byeon IJ; Keezer S; Prives C Cell Cycle; 2016 Jun; 15(11):1425-38. PubMed ID: 27210019 [TBL] [Abstract][Full Text] [Related]
20. Acetylation-regulated interaction between p53 and SET reveals a widespread regulatory mode. Wang D; Kon N; Lasso G; Jiang L; Leng W; Zhu WG; Qin J; Honig B; Gu W Nature; 2016 Oct; 538(7623):118-122. PubMed ID: 27626385 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]