BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

430 related articles for article (PubMed ID: 31680357)

  • 1. Hyperspectral imaging combined with machine learning as a tool to obtain high-throughput plant salt-stress phenotyping.
    Feng X; Zhan Y; Wang Q; Yang X; Yu C; Wang H; Tang Z; Jiang D; Peng C; He Y
    Plant J; 2020 Mar; 101(6):1448-1461. PubMed ID: 31680357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectroscopy based novel spectral indices, PCA- and PLSR-coupled machine learning models for salinity stress phenotyping of rice.
    Das B; Manohara KK; Mahajan GR; Sahoo RN
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 229():117983. PubMed ID: 31896051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving the genetic potential of okra (Abelmoschus esculentus L.) germplasm to tolerate salinity stress.
    Haq IU; Azam N; Ashraf M; Javaid MM; Murtaza G; Ahmed Z; Riaz MA; Iqbal R; Habib Ur Rahman M; Alwahibi MS; Elshikh MS; Aslam MU; Arslan M
    Sci Rep; 2023 Dec; 13(1):21504. PubMed ID: 38057336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comprehensive screening and selection of okra (Abelmoschus esculentus) germplasm for salinity tolerance at the seedling stage and during plant ontogeny.
    Haq IU; Khan AA; Khan IA; Azmat MA
    J Zhejiang Univ Sci B; 2012 Jul; 13(7):533-44. PubMed ID: 22761245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applicability of hyperspectral imaging during salinity stress in rice for tracking Na+ and K+ levels in planta.
    Pabuayon ICM; Pabuayon ILB; Singh RK; Ritchie GL; de Los Reyes BG
    PLoS One; 2022; 17(7):e0270931. PubMed ID: 35797400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyperspectral Proximal Sensing for Estimating Photosynthetic Capacities at Leaf and Canopy Scales.
    Fu P; Montes C; Meacham-Hensold K
    Methods Mol Biol; 2024; 2790():355-372. PubMed ID: 38649580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of Visible/Near-Infrared Spectroscopy and Hyperspectral Imaging with Machine Learning for High-Throughput Plant Heavy Metal Stress Phenotyping: A Review.
    Zhai Y; Zhou L; Qi H; Gao P; Zhang C
    Plant Phenomics; 2023; 5():0124. PubMed ID: 38239738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bagging Improves the Performance of Deep Learning-Based Semantic Segmentation with Limited Labeled Images: A Case Study of Crop Segmentation for High-Throughput Plant Phenotyping.
    Zhan Y; Zhou Y; Bai G; Ge Y
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Throughput Non-destructive Phenotyping of Traits that Contribute to Salinity Tolerance in
    Awlia M; Nigro A; Fajkus J; Schmoeckel SM; Negrão S; Santelia D; Trtílek M; Tester M; Julkowska MM; Panzarová K
    Front Plant Sci; 2016; 7():1414. PubMed ID: 27733855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics and genetic regulation of leaf nutrient concentration in barley based on hyperspectral imaging and machine learning.
    Grieco M; Schmidt M; Warnemünde S; Backhaus A; Klück HC; Garibay A; Tandrón Moya YA; Jozefowicz AM; Mock HP; Seiffert U; Maurer A; Pillen K
    Plant Sci; 2022 Feb; 315():111123. PubMed ID: 35067296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyperspectral Technique Combined With Deep Learning Algorithm for Prediction of Phenotyping Traits in Lettuce.
    Yu S; Fan J; Lu X; Wen W; Shao S; Guo X; Zhao C
    Front Plant Sci; 2022; 13():927832. PubMed ID: 35845657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of plant salt response: insights from proteomics.
    Zhang H; Han B; Wang T; Chen S; Li H; Zhang Y; Dai S
    J Proteome Res; 2012 Jan; 11(1):49-67. PubMed ID: 22017755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Salt resistant crop plants.
    Roy SJ; Negrão S; Tester M
    Curr Opin Biotechnol; 2014 Apr; 26():115-24. PubMed ID: 24679267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine Learning for High-Throughput Stress Phenotyping in Plants.
    Singh A; Ganapathysubramanian B; Singh AK; Sarkar S
    Trends Plant Sci; 2016 Feb; 21(2):110-124. PubMed ID: 26651918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LeafSpec-Dicot: An Accurate and Portable Hyperspectral Imaging Device for Dicot Leaves.
    Li X; Chen Z; Wang J; Jin J
    Sensors (Basel); 2023 Apr; 23(7):. PubMed ID: 37050749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine Learning Techniques for Predicting Crop Photosynthetic Capacity from Leaf Reflectance Spectra.
    Heckmann D; Schlüter U; Weber APM
    Mol Plant; 2017 Jun; 10(6):878-890. PubMed ID: 28461269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An insight from tolerance to salinity stress in halophyte Portulaca oleracea L.: Physio-morphological, biochemical and molecular responses.
    Sdouga D; Ben Amor F; Ghribi S; Kabtni S; Tebini M; Branca F; Trifi-Farah N; Marghali S
    Ecotoxicol Environ Saf; 2019 May; 172():45-52. PubMed ID: 30677744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative physiological and full-length transcriptome analyses reveal the molecular mechanism of melatonin-mediated salt tolerance in okra (Abelmoschus esculentus L.).
    Zhan Y; Wu T; Zhao X; Wang Z; Chen Y
    BMC Plant Biol; 2021 Apr; 21(1):180. PubMed ID: 33858330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical Imaging Resources for Crop Phenotyping and Stress Detection.
    Waiphara P; Bourgenot C; Compton LJ; Prashar A
    Methods Mol Biol; 2022; 2494():255-265. PubMed ID: 35467213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative proteomic analysis of okra (Abelmoschus esculentus L.) seedlings under salt stress.
    Zhan Y; Wu Q; Chen Y; Tang M; Sun C; Sun J; Yu C
    BMC Genomics; 2019 May; 20(1):381. PubMed ID: 31096913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.