These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 31680400)

  • 1. Trace analysis of rimantadine in human urine after dispersive liquid liquid microextraction followed by liquid chromatography-post column derivatization.
    Zacharis CK; Tzanavaras PD
    J Sep Sci; 2020 Feb; 43(3):631-638. PubMed ID: 31680400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of rimantadine in human urine by HPLC using a monolithic stationary phase and on-line post-column derivatization.
    Zacharis CK; Tzanavaras PD; Vlessidis AG
    J Sep Sci; 2013 Jun; 36(11):1720-5. PubMed ID: 23650193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of amantadine in biological fluids using simultaneous derivatization and dispersive liquid-liquid microextraction followed by gas chromatography-flame ionization detection.
    Farajzadeh MA; Nouri N; Alizadeh Nabil AA
    J Chromatogr B Analyt Technol Biomed Life Sci; 2013 Dec; 940():142-9. PubMed ID: 24157523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined dispersive solid-phase extraction-dispersive liquid-liquid microextraction-derivatization for gas chromatography-mass spectrometric determination of aliphatic amines on atmospheric fine particles.
    Majedi SM; Lee HK
    J Chromatogr A; 2017 Feb; 1486():86-95. PubMed ID: 27425764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrophilic interaction chromatography combined with dispersive liquid-liquid microextraction as a preconcentration tool for the simultaneous determination of the panel of underivatized neurotransmitters in human urine samples.
    Konieczna L; Roszkowska A; Niedźwiecki M; Bączek T
    J Chromatogr A; 2016 Jan; 1431():111-121. PubMed ID: 26747692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sol-gel Carbowax 20M-zwitterionic ionic liquid composite sorbent-based capsule phase microextraction device combined with HPLC/post-column derivatization for the determination of lanreotide, a human somatostatin analogue in urine.
    Ntorkou M; Kabir A; Furton KG; Tzanavaras PD; Zacharis CK
    J Chromatogr A; 2024 Feb; 1717():464674. PubMed ID: 38290172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Concerted derivatization and concentration method with dispersive liquid-liquid microextraction for liquid chromatographic analysis of 5-hydroxyindoles in human serum.
    Hayama T; Yabuuchi Y; Iwamatsu T; Tamashima E; Kawami Y; Itoyama M; Yoshida H; Yamaguchi M; Nohta H
    Talanta; 2013 Dec; 117():27-31. PubMed ID: 24209305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous derivatization and solid-based disperser liquid-liquid microextraction for extraction and preconcentration of some antidepressants and an antiarrhythmic agent in urine and plasma samples followed by GC-FID.
    Farajzadeh MA; Khorram P; Ghorbanpour H
    J Chromatogr B Analyt Technol Biomed Life Sci; 2015 Mar; 983-984():55-61. PubMed ID: 25618251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel method for high preconcentration of ultra trace amounts of B₁, B₂, G₁ and G₂ aflatoxins in edible oils by dispersive liquid-liquid microextraction after immunoaffinity column clean-up.
    Afzali D; Ghanbarian M; Mostafavi A; Shamspur T; Ghaseminezhad S
    J Chromatogr A; 2012 Jul; 1247():35-41. PubMed ID: 22673813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of ultrasound-enhanced air-assisted liquid-liquid microextraction and low-density solvent-based dispersive liquid-liquid microextraction methods for determination of nonsteroidal anti-inflammatory drugs in human urine samples.
    Barfi B; Asghari A; Rajabi M; Goochani Moghadam A; Mirkhani N; Ahmadi F
    J Pharm Biomed Anal; 2015; 111():297-305. PubMed ID: 25916913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of free formaldehyde in cosmetics containing formaldehyde-releasing preservatives by reversed-phase dispersive liquid-liquid microextraction and liquid chromatography with post-column derivatization.
    Miralles P; Chisvert A; Alonso MJ; Hernandorena S; Salvador A
    J Chromatogr A; 2018 Mar; 1543():34-39. PubMed ID: 29478830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid determination of lead in water samples by dispersive liquid-liquid microextraction coupled with electrothermal atomic absorption spectrometry.
    Naseri MT; Hosseini MR; Assadi Y; Kiani A
    Talanta; 2008 Mar; 75(1):56-62. PubMed ID: 18371847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dispersive liquid-liquid microextraction as an effective preanalytical step for the determination of estradiol in human urine.
    Kupcová E; Reiffová K
    J Sep Sci; 2017 Jun; 40(12):2620-2628. PubMed ID: 28436161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dispersive liquid-liquid microextraction based on solidification of floating organic drop and high-performance liquid chromatography to the analysis of cocaine's major adulterants in human urine.
    Sena LC; Matos HR; Dórea HS; Pimentel MF; de Santana DC; de Santana FJ
    Toxicology; 2017 Feb; 376():102-112. PubMed ID: 27142991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preconcentration of trace amounts of methadone in human urine, plasma, saliva and sweat samples using dispersive liquid-liquid microextraction followed by high performance liquid chromatography.
    Ranjbari E; Golbabanezhad-Azizi AA; Hadjmohammadi MR
    Talanta; 2012 May; 94():116-22. PubMed ID: 22608423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Determination of amantadine and rimantadine residues in egg and chicken samples by dispersive solid phase extraction purification-ultra high performance liquid chromatography-tandem mass spectrometry].
    Lin T; Fan J; Liu X; Chen X; Li Y; Liu H
    Se Pu; 2015 Nov; 33(11):1169-74. PubMed ID: 26939363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combination of in situ metathesis reaction with a novel "magnetic effervescent tablet-assisted ionic liquid dispersive microextraction" for the determination of endogenous steroids in human fluids.
    Wu J; Xu Z; Pan Y; Shi Y; Bao X; Li J; Tong Y; Tang H; Ma S; Wang X; Lyu J
    Anal Bioanal Chem; 2018 May; 410(12):2921-2935. PubMed ID: 29532194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of continuous dispersive liquid-liquid microextraction performed in home-made device for extraction and preconcentration of aryloxyphenoxy-propionate herbicides from aqueous samples followed by gas chromatography-flame ionization detection.
    Farajzadeh MA; Mohebbi A; Feriduni B
    Anal Chim Acta; 2016 May; 920():1-9. PubMed ID: 27114217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of three antidepressants in urine using simultaneous derivatization and temperature-assisted dispersive liquid-liquid microextraction followed by gas chromatography-flame ionization detection.
    Nabil AA; Nouri N; Farajzadeh MA
    Biomed Chromatogr; 2015 Jul; 29(7):1094-102. PubMed ID: 25516238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combination of dispersive solid phase extraction and deep eutectic solvent-based air-assisted liquid-liquid microextraction followed by gas chromatography-mass spectrometry as an efficient analytical method for the quantification of some tricyclic antidepressant drugs in biological fluids.
    Mohebbi A; Yaripour S; Farajzadeh MA; Afshar Mogaddam MR
    J Chromatogr A; 2018 Oct; 1571():84-93. PubMed ID: 30119972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.