These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 31680813)

  • 1. Effects of 3 Weeks of Water Immersion and Restraint Stress on Sleep in Mice.
    Yasugaki S; Liu CY; Kashiwagi M; Kanuka M; Honda T; Miyata S; Yanagisawa M; Hayashi Y
    Front Neurosci; 2019; 13():1072. PubMed ID: 31680813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intermittent hypoxia causes REM sleep deficits and decreases EEG delta power in NREM sleep in the C57BL/6J mouse.
    Polotsky VY; Rubin AE; Balbir A; Dean T; Smith PL; Schwartz AR; O'Donnell CP
    Sleep Med; 2006 Jan; 7(1):7-16. PubMed ID: 16309961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions between brief restraint, novelty and footshock stress on subsequent sleep and EEG power in rats.
    Tang X; Yang L; Sanford LD
    Brain Res; 2007 Apr; 1142():110-8. PubMed ID: 17300767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ovarian hormones promote recovery from sleep deprivation by increasing sleep intensity in middle-aged ovariectomized rats.
    Deurveilher S; Seary ME; Semba K
    Horm Behav; 2013 Apr; 63(4):566-76. PubMed ID: 23454003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term vs. short-term processes regulating REM sleep.
    Franken P
    J Sleep Res; 2002 Mar; 11(1):17-28. PubMed ID: 11869422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Counterpointing the functional role of the forebrain and of the brainstem in the control of the sleep-waking system.
    Villablanca JR
    J Sleep Res; 2004 Sep; 13(3):179-208. PubMed ID: 15339255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of circadian phase and duration of sleep deprivation on sleep and EEG power spectra in the cat.
    Lancel M; van Riezen H; Glatt A
    Brain Res; 1991 May; 548(1-2):206-14. PubMed ID: 1868336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The time course of sigma activity and slow-wave activity during NREMS in cortical and thalamic EEG of the cat during baseline and after 12 hours of wakefulness.
    Lancel M; van Riezen H; Glatt A
    Brain Res; 1992 Nov; 596(1-2):285-95. PubMed ID: 1467989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diurnal effects of acute and chronic administration of ethanol on sleep in rats.
    Kubota T; De A; Brown RA; Simasko SM; Krueger JM
    Alcohol Clin Exp Res; 2002 Aug; 26(8):1153-61. PubMed ID: 12198389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sleep-wake characterization of double MT₁/MT₂ receptor knockout mice and comparison with MT₁ and MT₂ receptor knockout mice.
    Comai S; Ochoa-Sanchez R; Gobbi G
    Behav Brain Res; 2013 Apr; 243():231-8. PubMed ID: 23333399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Copine-7 is required for REM sleep regulation following cage change or water immersion and restraint stress in mice.
    Liu CY; Tsai CJ; Yasugaki S; Nagata N; Morita M; Isotani A; Yanagisawa M; Hayashi Y
    Neurosci Res; 2021 Apr; 165():14-25. PubMed ID: 32283105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Absence of systematic relationships between REMS duration episodes and spectral power Delta and Ultra-Slow bands in contiguous NREMS episodes in healthy humans.
    Le Bon O; Linkowski P
    J Neurophysiol; 2013 Jul; 110(1):162-9. PubMed ID: 23596336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of light on sleep and the EEG of young rats.
    Alföldi P; Tobler I; Borbély AA
    Pflugers Arch; 1990 Dec; 417(4):398-403. PubMed ID: 2080104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoperiod alters duration and intensity of non-rapid eye movement sleep following immune challenge in Siberian hamsters (Phodopus sungorus).
    Ashley NT; Zhang N; Weil ZM; Magalang UJ; Nelson RJ
    Chronobiol Int; 2012 Jul; 29(6):683-92. PubMed ID: 22734569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short light-dark cycles influence sleep stages and EEG power spectra in the rat.
    Alföldi P; Franken P; Tobler I; Borbély AA
    Behav Brain Res; 1991 May; 43(2):125-31. PubMed ID: 1867754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sleep regulation in rats: effects of sleep deprivation, light, and circadian phase.
    Trachsel L; Tobler I; Borbély AA
    Am J Physiol; 1986 Dec; 251(6 Pt 2):R1037-44. PubMed ID: 3789191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sleep in spontaneous dwarf rats.
    Peterfi Z; Obal F; Taishi P; Gardi J; Kacsoh B; Unterman T; Krueger JM
    Brain Res; 2006 Sep; 1108(1):133-46. PubMed ID: 16859658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disruptions of Sleep/Wake Patterns in the Stable Tubule Only Polypeptide (STOP) Null Mouse Model of Schizophrenia.
    Profitt MF; Deurveilher S; Robertson GS; Rusak B; Semba K
    Schizophr Bull; 2016 Sep; 42(5):1207-15. PubMed ID: 26940700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heart rate dynamics during human sleep.
    Cajochen C; Pischke J; Aeschbach D; Borbély AA
    Physiol Behav; 1994 Apr; 55(4):769-74. PubMed ID: 8190808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beta2-containing nicotinic receptors contribute to the organization of sleep and regulate putative micro-arousals in mice.
    Léna C; Popa D; Grailhe R; Escourrou P; Changeux JP; Adrien J
    J Neurosci; 2004 Jun; 24(25):5711-8. PubMed ID: 15215293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.