BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 31680840)

  • 1. Adoptive Transfer of Regulatory T Cells as a Promising Immunotherapy for the Treatment of Multiple Sclerosis.
    Duffy SS; Keating BA; Moalem-Taylor G
    Front Neurosci; 2019; 13():1107. PubMed ID: 31680840
    [No Abstract]   [Full Text] [Related]  

  • 2. 1,25-dihydroxyvitamin D
    Xie Z; Chen J; Zheng C; Wu J; Cheng Y; Zhu S; Lin C; Cao Q; Zhu J; Jin T
    Immunology; 2017 Nov; 152(3):414-424. PubMed ID: 28617989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adoptive immunotherapy of experimental autoimmune encephalomyelitis via T cell delivery of the IL-12 p40 subunit.
    Costa GL; Sandora MR; Nakajima A; Nguyen EV; Taylor-Edwards C; Slavin AJ; Contag CH; Fathman CG; Benson JM
    J Immunol; 2001 Aug; 167(4):2379-87. PubMed ID: 11490028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Depletion of CD4+ CD25+ regulatory T cells confers susceptibility to experimental autoimmune encephalomyelitis (EAE) in GM-CSF-deficient Csf2-/- mice.
    Ghosh D; Curtis AD; Wilkinson DS; Mannie MD
    J Leukoc Biol; 2016 Oct; 100(4):747-760. PubMed ID: 27256565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Partial CD25 Antagonism Enables Dominance of Antigen-Inducible CD25
    Wilkinson DS; Ghosh D; Nickle RA; Moorman CD; Mannie MD
    Front Immunol; 2017; 8():1782. PubMed ID: 29312311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulatory T Cells and Their Derived Cytokine, Interleukin-35, Reduce Pain in Experimental Autoimmune Encephalomyelitis.
    Duffy SS; Keating BA; Perera CJ; Lees JG; Tonkin RS; Makker PGS; Carrive P; Butovsky O; Moalem-Taylor G
    J Neurosci; 2019 Mar; 39(12):2326-2346. PubMed ID: 30651334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. T-cell based immunotherapy in experimental autoimmune encephalomyelitis and multiple sclerosis.
    O'Brien K; Gran B; Rostami A
    Immunotherapy; 2010 Jan; 2(1):99-115. PubMed ID: 20231863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active and passively induced experimental autoimmune encephalomyelitis in common marmosets: a new model for multiple sclerosis.
    Massacesi L; Genain CP; Lee-Parritz D; Letvin NL; Canfield D; Hauser SL
    Ann Neurol; 1995 Apr; 37(4):519-30. PubMed ID: 7717689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The heat-stable antigen determines pathogenicity of self-reactive T cells in experimental autoimmune encephalomyelitis.
    Bai XF; Liu JQ; Liu X; Guo Y; Cox K; Wen J; Zheng P; Liu Y
    J Clin Invest; 2000 May; 105(9):1227-32. PubMed ID: 10791997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple sclerosis: comparison of the human T-cell response to S100 beta and myelin basic protein reveals parallels to rat experimental autoimmune panencephalitis.
    Schmidt S; Linington C; Zipp F; Sotgiu S; de Waal Malefyt R; Wekerle H; Hohlfeld R
    Brain; 1997 Aug; 120 ( Pt 8)():1437-45. PubMed ID: 9278633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural killer T cells in multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis.
    Van Kaer L; Wu L; Parekh VV
    Immunology; 2015 Sep; 146(1):1-10. PubMed ID: 26032048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Host T cells are the main producers of IL-17 within the central nervous system during initiation of experimental autoimmune encephalomyelitis induced by adoptive transfer of Th1 cell lines.
    Lees JR; Iwakura Y; Russell JH
    J Immunol; 2008 Jun; 180(12):8066-72. PubMed ID: 18523270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autoimmune pathogenesis of multiple sclerosis: role of autoreactive T lymphocytes and new immunotherapeutic strategies.
    Stinissen P; Raus J; Zhang J
    Crit Rev Immunol; 1997; 17(1):33-75. PubMed ID: 9034723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of regulatory cells suppresses experimental allergic encephalomyelitis via secretion of IL-10.
    Stohlman SA; Pei L; Cua DJ; Li Z; Hinton DR
    J Immunol; 1999 Dec; 163(11):6338-44. PubMed ID: 10570329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transforming growth factor-beta enhances the in vivo effector function and memory phenotype of antigen-specific T helper cells in experimental autoimmune encephalomyelitis.
    Weinberg AD; Whitham R; Swain SL; Morrison WJ; Wyrick G; Hoy C; Vandenbark AA; Offner H
    J Immunol; 1992 Apr; 148(7):2109-17. PubMed ID: 1347550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Infusion of Sulfosuccinimidyl-4-[N-maleimidomethyl]cyclohexane-1-carboxylate-Conjugated MOG35-55-Coupled Spleen Cells Effectively Prevents and Reverses Experimental Autoimmune Encephalomyelitis in Mice.
    Zhang L; Guo Y; Xia CQ
    J Immunol Res; 2015; 2015():129682. PubMed ID: 26258148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cutting edge: CD4+CD25+ regulatory T cells suppress antigen-specific autoreactive immune responses and central nervous system inflammation during active experimental autoimmune encephalomyelitis.
    Kohm AP; Carpentier PA; Anger HA; Miller SD
    J Immunol; 2002 Nov; 169(9):4712-6. PubMed ID: 12391178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. B lymphocytes treated in vitro with antigen coupled to cholera toxin B subunit induce antigen-specific Foxp3(+) regulatory T cells and protect against experimental autoimmune encephalomyelitis.
    Sun JB; Czerkinsky C; Holmgren J
    J Immunol; 2012 Feb; 188(4):1686-97. PubMed ID: 22250081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulatory B Cells Induce Formation of IL-10-Expressing T Cells in Mice with Autoimmune Neuroinflammation.
    Pennati A; Ng S; Wu Y; Murphy JR; Deng J; Rangaraju S; Asress S; Blanchfield JL; Evavold B; Galipeau J
    J Neurosci; 2016 Dec; 36(50):12598-12610. PubMed ID: 27821578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sephin1, which prolongs the integrated stress response, is a promising therapeutic for multiple sclerosis.
    Chen Y; Podojil JR; Kunjamma RB; Jones J; Weiner M; Lin W; Miller SD; Popko B
    Brain; 2019 Feb; 142(2):344-361. PubMed ID: 30657878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.